(7o
TN\

\/

a’ %ithEigN %ﬁ”ﬂizf}gﬁ\‘”@@
_ Review Article

n1In El"lﬂ‘(iﬂiaﬂ‘:ﬂi&l L'Jﬁﬁtlazﬂ']iﬂ‘izigﬂ@ﬂ%ﬂ'lﬂLﬂﬁ"ﬁﬂ‘i‘i&

a {1 o ¢ Y] 2,3%
NINWN LRAINNE , a8 ﬁS‘YIﬁ’]'V!‘YIﬁ

"LNFTNT, NBIMILANIADIENGER FININUAUSNTIUNTAMNTUAZEN NIENTNENTITUFY TNTAUUNYI
236.07., MININTIMIUANTUIZIIRUNAMNFATNNIFVNN ABLNFTANIAT I Inenapdatng damiauargy

nguitbdygndszdviuaziuanlulading

* Aadagunus: a1dad ASNIWNs M3TIIMIUNNIUATEIRUNAIEATNIEIN N AnNETMaas WnIngaufatng JniauaTlau
73000 In36wyi 0 3425 5800, E-mail: Sratthaphut_L@su.ac.th

UNANL

6 Y]
ﬂ']iWEl”lﬂsma‘ld]:ﬂﬁNL'Ja']Llagﬂ']i‘].ligi‘!ﬂ@ﬂ%ﬂ']\‘]lﬂﬁ'ﬁﬂﬁsﬂ
nInun wasfing', ;MIad asnswne?®
2. LNETNEATI AU 2566; 19(3) : 1-11

SUUNAIN: 13 WOAINBY 2565 unlaunaa: 18 s ey 2566 MOUTL: 18 FINIAN 2566

miwmnmhﬂumimﬂmirﬁm@qnwsﬂiﬁauﬁw’fuluamﬂm fﬁaﬁmmﬁ’]ﬁ'@u,a:gﬂﬁﬁmlm”l,umnwLmuamaﬁ
UseANIAINW mswmﬂinilfﬁaﬂ%mmfu'mmﬁmﬁ:ﬁ*‘ﬁaQaluaﬁmﬁﬁﬂulﬂﬁmﬂﬁamswmﬂmiﬁfmﬂj"agaagmim'sm auNINIA
ﬁa“gm]’agaﬁvlﬁmﬂmiﬁhmw%anﬁm’%mmuﬁwﬁunm mwgnnsataynIunaLdunzuIsmMIneInIid1 e ayaaun T
AazifduluemanannsFsnafidIwan TayaayninaUznaudndInd199 leud uwalin (Trend), n@na (Seasonal),
17)aN3 (Cyclic) waz §#95UN2% (Noise) TaanIITHaI LLumhaaﬂumiwmnirﬁagnmnmu“ni%mgumaummgmmwﬁnmi
Cross Industry Standard Process for Data Mining (CRISP-DM) tnafiafillunyn BINTHAUNIWIAUATMNIUULUANNFNNUS
vasdayasIvnTansaanauITnasuuudnaesde I5nIneaia LLaﬁ%miﬁwfmmm%m lumangonssulafinng
ﬂs:qﬂ@ﬂu 2 d’suﬁmauslﬁf[ﬂuﬁ’i’mqﬂszmﬂ’ua:mﬂﬁﬂlumsa%ame‘i’maaﬁmmi’mﬂm fa 1) msnenIaialgInemue i
iagazTamé’waaml"ﬁﬁhﬂ@T’mmiw:m'smﬁ’mme‘haauﬁawmmfﬁ@iﬂfﬁhUluizyzﬁ'@f’l,ﬂ nanmsansanusasi lulglunng
GAAWIATIN DL ERTDNIUNBIDITUIDNBINTALANG § 2) NMINDINTAANNABINIITEN snannInennIniaNuGaInNITRRAN
a1t Lﬁaﬂiﬂwﬁ@iaszuu‘[fﬁqﬂmuﬁsr}'uﬁamaaqm’mnﬁum MNIaYSIanslTowSesaaUN L BN VBIRUI BT UNNEIN
wuuiraesdmadiafinauiiaiuauwininluniswenyl wazsh llimuauwidjuidnisluasdnslanudanau
wWasuula miwmnirﬁm}munmlumaméﬁmiiuLflu?ﬁmmﬁﬂumim"ﬁaHa@i’mmﬁﬁuﬁn“ﬁashwimﬁaam?miw:ﬁl,ﬁia
waaussmtihaesiiiawladne SnrssimaunsoRanineiamInegnsaiang g Lﬁ@ﬂ?ﬂ%ﬁwﬁaa&aﬁmﬁ anuuainglung

& | o A an A o A Y ' A o
WUﬁlﬂifﬁ}ﬂuaQﬂﬂﬂqﬂ,ﬂ@ﬂjﬁﬂ'ﬁ'ﬂL%N']zauﬂll'ﬂill'ﬂ“ﬂE’J\T’Uaﬂﬂﬂ‘%ﬂiunaq °ﬁ'NL'Ja'ﬁ’]ﬁﬂﬂ:ﬂLLﬂz'J@]q‘]Jizaﬁfﬂuﬂ'ﬁw Uqﬂiﬂi

ANEATY: BUNTNLIAY, NMIWDINTHAUNTWIIAT, UDLIIRBINITUIVRIATEY, nManennIaidnldiodum, nmaneniniana

R aaribiilg

ﬁ



\\f— 2. LNETENEATOENY miwmﬂizﬁamiwnamaxmiﬂi:qnﬁ‘lumama%zmﬁw
& 2 0 19 aUuN 3 n.A. — n.8. 2566 NINUN LUATANE Laza e

i, iy
N>

Time series forecasting and application in pharmaceutical area

2,35

Gornganog Nettip', Lawan Sratthaphut

" Pharmacist, Narcotics Revolving Fund, Narcotic Control Division, Food and Drug Administration, Nonthaburi
2Assoc. Prof. Dr., Department of Biomedicine and Health Informatics, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom

3Artificial Intelligence and Metabolomics Research Group (AiM)

*Corresponding author: Lawan Sratthaphut, Department of Biomedicine and Health Informatics, Faculty of Pharmacy, Silpakorn University,

Nakhon Pathom, 73000 Thailand. Tel. 034-255800, E-mail: Sratthaphut_L@su.ac.th
Abstract
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Forecasting is a prediction of an event that will happen in the future. This is very important for effective planning. The
most popular quantitative forecasting based on historical data analysis is time series forecasting. Time series is a series of
observations listed in the order of time. Time series forecasting is the process of predicting the future value of time series data
based on past observations. Time series data consists of the following components: Trend, Seasonal, Cyclic and Noise. The
standard procedures based on Cross Industry Standard Process for Data Mining (CRISP-DM) framework principles are often
used to develop models in time series forecasting. The model development technique used to define the relationships between
variables and to forecast time series data can be divided into statistical method and machine learning method. In the field of
pharmacy, time series forecasting has been applied in two interesting areas, each with different purposes and techniques. The
first is drug expenditure forecasting. Studies were conducted by using long-term retrospective data for developing models to
predict drug expenditure in the next period. The results of studies are used to provide decision-making information for well
prepare in any situation. The second application is to forecast the demand for drug products, that can cause a profitable in
complex supply chain of pharmaceutical industry by using the model from drug consumption or drug sales data. Modeling
techniques require more precise prediction to promptly determine the process in organization. In pharmaceutical domain, time
series forecasting is one of the methods to fetch the consecutive drug information to analyze for finding the answer of some
interest in advance. In addition, forecasting techniques be adjusted to better fit available data The efficiency in forecasting

depends on choosing a method that is appropriate for the context of the time series data, study period, and forecasting objectives.

Keywords: time series, time series forecasting, machine learning model, drug expenditure forecasting, drug demand forecasting
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VBN mn‘*ﬁayagmtﬂmﬁﬂﬁagiugﬂ LuUeWIEEnsae
e (label) LLaﬂﬁﬁmiﬁ'ﬂuﬁmaaLﬂ%iaoLLuuﬁ;jaauIﬂﬂﬁﬁa
LLﬂiﬁﬁL“}Tﬁmnagnwnmﬁuu’a*’g@%gaaamﬂwgﬂﬂaﬂmu
20181 %@ﬁaLLﬂiﬁﬁLiwagluq@nmﬁ@iamﬂ@hﬁhmluaﬁm
wmafindug ilt laun nsaaney, nsnanssuuutiu
09n1a (Regression with seasonality) W& ARIMA LU U
nan1a (Seasonal ARIMA) %aﬁmﬂﬂﬁgﬂuuqumamaaﬂg@
iagafumai’wme‘i’maaimﬁm (Kotu & Deshpande,
2019)
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n1In U”miﬂialfﬂﬂ\l LI8N LLQZﬂ’WiﬂJﬁZqﬂ(ﬂ%WWG LNETNIIN

nInwn L‘Hu@]'iﬁ‘WiT LRTA TS

4) ﬁmsﬁwfmaaméaa T8N TIEARY
AN LL‘uuaiﬁaaaﬁa%ﬂmmmﬁwﬁmaam'%lmvlﬁ%'umwaula]
Wuatrsninuazldiunisigadinduguisdiangaas
wuusaasneaialunswensal Senlainduwuuuiiaas
ATuLARaua? piaya (Bontempi et al., 2013) lFdwiunIs
ﬁLﬂﬁ:vﬁ;wﬁaQaﬁﬁmwﬁwﬁauua:a%aLLUUfﬁﬂaaa@Tw
3%71’1%%8%5"]]6&@%60 %ammmﬁwfqmé’nwmwaaﬁa
w15 (feature) UAZAINNFUNUETZNIN9 feature & 3559
mmsmaa%’uﬁagaﬁ'ﬁmmﬂlmy'ﬁu uazdeyaitlyled
ANUFNNUELTIEN tnafiafi 1T 1% CART regression trees
(CART), Support Vector Regression (SVR), Gaussian
Processes (GP) Multi-Layer Perceptron (MLP), Bayesian
Neural Network (BNN), Radial Basis Functions (RBF),
Generalized Regression Neural Networks (GRNN),
K-Nearest Neighbor regression (KNN) (Ahmed et al., 2010;
Makridakis et al., 2018) nasansialddnswaminisaa
me‘i’maaﬁ’symiﬁﬂuf"uaaLﬂéaavlﬂgiﬂ’liﬁﬂufl,%aﬁﬂ
(deep learning) (Choosri et al., 2019) Gﬁdﬁi’mg’mmﬁl’mmi
‘ﬁ’]d’m‘llﬂdﬂtyEy’]ﬂizﬁﬁiLﬁ%LﬁU?ﬁUﬂ’]iL%ﬂ%iﬂlENLﬂ%ia\ﬂ uel
fRanNIFN WA BLLLMIBTRIFN I L BA TR
AMURAIANIANUAALRZNEANTINA1 9 laswe1ea
AURIMBNNNIRANTUT U0 IFNBIUAZOENULLNITTNIY
PBIUUUINNDINNITUULTERIN ﬁﬂﬁmsﬁwjﬁaﬁﬂﬁﬁu
ﬁfﬁ‘fﬂlwﬁwmnﬁa lasstsdszanifisn (Artificial Neural
Networks; ANN) §n1341 feature mﬁmu@lﬁm%aaﬁwf
\duudaztu (layer) (Bengio et al., 2015) L aLAin A1
windrlumswonsaideyaiifamalng Jaududen
LLazLﬂu"ﬁagaﬁvlajmﬁ @Taaﬂwwaamn‘%wfv’ﬁaﬁﬂmﬁ@Su6]
L% Long Short Term Memory network (LSTM), Multilayered
feedforward artificial neural network (MLFANN) L & &
Generative adversarial networks (GAN) (Ingle et al., 2021)

4. nMsdszgndnsnainsataynsuaan luvnig
LNSEANIIN

ﬁagaﬁmqmmwLﬂwﬁagaﬁﬁmmeﬁuﬁawﬁlﬂu
Tagdudmaiudayagunnlugddidnnsafindiduduomn
anfizunsash g loridsdnlunsdnsndiuen g
LLﬁiﬁ“ﬁaga‘ﬁ'ﬁa%ia:ﬁmmﬁ’wmﬂmnﬁaf‘fmalué’mmm
usrnarvesgilag Tsswanuna UTENUsznugunIwn
MufusEne wammililumssamstymaansarile
Icﬂﬂmﬂﬁu“ﬁagaq‘*umwLLamTaQamﬂ%mﬁ"hiszq@ﬁmumaa

Qﬂaﬂﬁ‘ﬁaa:ﬁﬂﬂsjmminl,%au‘[mvl,ﬂgj’ﬁa;gamwwza_qlﬂﬂavl,vﬁ”
mﬁmiﬁ:ﬁ“ﬁayaagmwnmﬁﬁmiﬂizqﬂmﬂumu?aﬁ"ﬂ
NILARTNITULTUNIANBILLUSaUnaY (retrospective
study) tWatl5ouifisunananwladnwiafnisunsnums
(intervention) 8%NTNLIAN Tcﬂmﬁui@gmﬁﬁauuamﬁhmnﬁ
miLminLLSMasha@iaLﬁaaLLa:ﬁiw:mwaﬁayaLmﬁu
3N Interrupted time series Lﬂuﬂ’lﬁﬁ'ﬂﬁdﬂ@aadﬁl“f
Uszifndssantnavasnisunsnuas lugnuwnisoid la
a’m’liﬂﬁﬂHWL%GV]@aaGLLUUNNHinﬂ@T (Kaladee et al.,
2013) @18619NBIY LT% NIANHIVEI Sun WAZAME (Sun
etal, 2017) AnwIzuziaAnTanasvadEIBRaNULATAN
Nawalavasthoszwingd 2014 - 2017 Tulsenenunanialy
szauadunil dazineadu 6100133103129 Interrupted time
series 35nsnanasiadn wuiudedmaunsnussdaons
uwitluieaaszaziamsonadtans g szuzinansenasiady
Todeulumadrnuunndusznissusaalugisiaans
3.49 w1l (P = 0.003) uaz 8.70 w17l (P = 0.02) @u&1aU
waNaNi trend VoITTHZIIANTEABLFINIUNNTTLLIAN
1u§amﬂ'@a@aaaﬂnﬁﬁmém@ (P = 0.003) LaZNTFAN®
WY Sruamsiri LacAThe (Sruamsiri ef al., 2016) AT
10987 HANITINEY LATAUNUAITIHINIIUIA Lo
Wisuifisuanuwanddnasanmadsznaldiyddas
3(2) ludgFerwanuiim@ lasiivdayaainlasweuia
szauadoniilu 3 mavesdszinalnalull 2006 - 2012
WU nasanmsdszmealtinddes 22) 1 U S5asazvad
i‘i’m’m;jﬂ'mvlﬁ%'um‘luu”ty‘ﬁaiam”aﬂﬁhuﬁwfu WAZAUT A
INWINLILIATIE e TunRaaadagIlinadan aziinledn
mafutayagunIwluanemzaun IV ENNTAUINN
ﬂi:qﬂ@i‘ﬁﬁ%%’uaammmm?ﬁ'ﬂLﬁa@auﬁwmuslmg‘waami
L'ﬂ'%'ﬂtuLﬁwﬂizﬁﬂﬁwamaaﬁ'aﬁaﬂaﬁnmlwﬁwnm@m6]
e

fmTumInenIalaynINIRT "l@TL’%'uﬁmiﬁﬁ“ﬁaQa
mql,niwnmﬁl,flwﬁayaﬁmqmmwmlﬂumiw BNNTION U
wnarnssuaainue liiduiitouannin a1afiaandasina
1umiwmnmiﬁnnLLuuﬁﬁaaaﬁa%a“ﬁué’aﬂ“ﬁagamaﬂaﬁn
G962861991NNNIANBIVES Willmann Lazame (Willmann
et al., 2013) An1389UUUI 18I ARIMA ﬁrm"zj”agamsé'ﬂ"ﬁ
ENEUIATHYBILTIWENLNANAIINGNAY Tubingen SRNUT
mmsadgwesniiludl 2002 - 2011 tawsnstimufaida
éam%éfamnﬁmiﬁﬂﬁugLLam{lfﬁsmeﬁga%wﬁwi:uu
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Antimicrobial Stewardship Program (ASP) ;5‘3 8 a?ﬂ’i’l
Luud1aeInToyaaunINLIa onaldidwasasianitelu
AMINEINTDINAVDITZUL ASP Lﬁiaﬁwu@ﬂmmﬂﬁﬁﬁugua
16 wd'lsawrsagziananinsfiiaduaseldrninua
LﬁaamnvlaimmmLﬁunnﬁaga%aLﬂu@"umwaaﬂaﬁmﬁ
fonadensiiatedasn vinlwnseanuudiassluns
wenysilianuudugianss Tagtudnisdznndlddniy
mi‘wmnitﬁ@i’unuﬁﬁnmwmmaammwiv\mﬂ Fofinns
Tnafialunsasuuuinaesnuandsnunanisls
me‘haaamaaﬁﬁuazme‘haaamnmsﬁwfmaaLﬂ%‘aa
Anurmedsznnsdentfenisidenltuuuiiasdlunis
wmﬂiniﬁl,ﬁm:auluﬂ’lﬁmﬁzﬁagmunm foana3nu
$rwmtasund lasumsunss il dlunsssuuusiaes
mi‘wmmzﬁﬁﬁmﬁuﬁagaqmmwLﬁaamnﬁaﬂ"ﬁmwf
Inai g wazanugudauludrvastaya FJsdnsnauinig
a%ﬁaLLuUﬁiﬁaaaﬁaﬂmﬂ%'ﬂufmaam%'aamn“fmﬁaaﬂ
Fadrnave9n13lTuuusIneIn1ssianaasordunINy
°ﬁ’1mry°uaa;d”"sl,m’]zﬂuﬂﬁm‘%w feature 614 ¢ (Kaushik
et al., 2020)

4.1 N1INEINIALAT T8 AW

INMIFUARIUITENDIY MINsInIolaynIw
nangnihanldwnsataldinoduen Lﬁaamﬂluﬂﬁ]qﬁu
alganaduenlunais g ﬂizmmﬁ'ugpﬁu Badunannan
wanudads 1w Uizanigieny anuananiiednay
ga"fu lummzﬁﬁmiﬁ@ﬁumﬂﬁjaﬂmjﬁ'ﬁswmLtwﬁfulﬁai‘f
Tumssnewenuis lwameiinsnensaianduaiosdle
ﬁﬁﬁtylumsawmeaﬁumﬂﬁlwfumaam‘l,"ﬁ'dwei”mm
(Kaushik et al., 2017; Linnér et al., 2020) ANNITWITY VDY
Linnér uazane (Linnér et al., 2020) ladnu1n1swenyol
mﬂ‘ﬁmLLa:@iﬂ“ﬁ'«jwﬁmmﬂnaan@aﬁaﬂiaﬁuﬁ%mmgﬂaﬂ
lunaziaouan SINNIBTUNINANITHEINTALANN
LuUdaeafils@nunlutaaszaziaan 10 1 esudd) 2007 -
2018 la ﬂﬂ’]ﬁl,m']zﬁagmuna’lﬁa 83D N1INAn 0L EILEY
G‘Eaiagamﬁ]zgﬂLmﬂ’imsw:ﬁmuﬂﬁjumﬁuﬂammﬁa
Anatomical Therapeutic Chemical (ATC) “ﬁ'ﬂgamnﬂﬂﬁjm:
anianwenisidlsieluudazd Taswoninideunin
1 1 Juazwennsailududiin udinanswensaing 2
29 pFpuisnnualdinsfifeduase anuutugaes
mMINENstiLEaITIsAaNL T Ansnanan (coefficient) uaz
drgudszansniseagule (R2) nan133sanuin drldsne

@T’mmﬁﬁ’]miwmﬂsm‘iumaﬁuﬂﬁmmlﬂﬁLﬁmﬁ'mTaga
259117091 lasdidn coefficient LAY 0.827 LazAN R2
Wil 0.339 (p < 0.05) anagndaslumaneinsaialding
Musluudazd 7aa2861 MAPE inny 1.9% anuudnen
lunswsnsalfanauandrsnulundaznguen §33eld
aAUMetaTasuninadenuudndrluminensallasld
wuusaesit laun Frsnmndnlniniesaiiylvieeng
ama sasmslgonlag uninmsddsuudssslouvioms
dindodenluszniiedane fidpdselinalsuundiess
lumswensatasnandanuuindiuazianuinunzsuny
U3unvastaya 5nﬁga§'amuﬁm:qﬂaﬁ'mme] Afnade
ANNuABEUaILLUIRe ba mﬂwamswmmniﬁvlﬁﬁlzgﬂ
ilulslunsdaaulaigaulovne ar3linisdiudyuas
é"‘wL@mLLum‘haaﬂﬁﬂuﬁaqﬂuﬁauﬁa:lﬁw gINTORLUANT
aaaula

8199103 8au g AlTnIasuUUdIaaiie
wmmniﬁﬂ%ﬁhm‘ﬁum@hﬂmﬂﬁﬂmsﬁwfmaam%m LT
N13fn®12849 Kaushik Lazame (Kaushik et al., 2017)
wmmzﬁﬁﬂ‘ﬁaﬁﬂ@i”mm@im@ﬁ'aumaaﬁﬂwlumsé&mmju
s2dULaf e UMssITnanuwng demsEsuULsIaes
Tagldinadia LSTM Fadulassinodssamifisusfianien
ﬁwuwlﬁm’%‘aaL'%'ﬂuj‘*ﬁagamuﬁw‘fmluu@iammmmwﬁﬂﬁ
a9dn WisuisuiuLLUiaesRaedsmafin ARIMA
;ﬁﬁ?’ﬂl“ﬁ“ﬁaQaﬁnnmﬂﬁmhﬂﬂi:ﬁuqmmwmaaﬁjﬂwlu
Uszinaanigaining laglugatayalsznaudan feature
loun iagaﬁ;avlﬂmaag”ﬂ'm (218, wwet, nlisuwn, Difia)
Jayaneadin (Usziannadiuuinig, wanitlady,
satzdnaagig) LLaz"ﬁaga@iﬂ%ﬁimﬁ’mﬂ’mﬁjm:ﬁbﬂm
vataeluudazifan doudidonunsnaud 2011 £
sunand 2015 lasutisgatoyaludag 4 Jusnidugadoya
Andu uazdoyal 2015 1dugadayanasey dazilu
UIzENTAINYBILLUEI8BI9INAN Root Mean Square Error
(RMSE) Han3ANEINUIN NMIR319uULINa89 ARIMA 310
@hwwswﬁmas’ﬁﬁﬁquu @1 RMSE mﬂ"q@"ﬁagamaau
WYINNU 16.855 WAz R2 LYinNU 0.8045 fS1WILUUUIIES
LsTM asn ldwamlanidanldniia §A2WEI7 3 — 8 91N 8
wihganui sl udssniaolsznaudae 7 layer tila
NARBIINATIZHULY single layer LSTM Wewuin é1 RMSE
NNYATDYINAFAULYINAL 14.617 UAzen R2 = 0.8048 139t

ladsuuwyudtanssdn stacked LSTM lasnissud
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n1In U”miﬂialfﬂﬂ\l LI8N LLQZﬂ’WiﬂJﬁZqﬂ(ﬂ%WWG LNETNIIN

nInwn L‘Hu@]'iﬁ‘WiT LRTA TS

WUIUAINS R DLANEIUIN Iayer’l,umsﬁﬂujﬁwiazmﬁea
wuiﬁfﬁﬂmmawaamﬂ%'ﬂufﬁﬁﬂﬁuuuﬁmaaﬁ@h
wmnitﬁﬁﬁﬁq@ﬁa 3,000 78U A1 RMSE a1ngataya
NaFaY WAL 13.693 uazdn R2 = 0.8159 fA3ua7Lin lu
qﬂﬁagaﬁ WUUS1809 stacked LSTM fuszAnTainlunng
WINTHANILUUT1a89 ARIMA Laz single layer LSTM
\anitae

daulutl 2020 Kaushik wazame lavinnsdns
fauaaNNUITBLAN (Kaushik et al., 2020) laniRandoya
mﬁﬁml“ﬁi}'mga 10 BUAULINIINTATBY LAY 1% 2
5793 Gerwnaliidne A uazen B iagaﬁl*’ﬁ’l,umi
’imi’]:ﬁﬂ%ﬁﬁaml‘*ﬁé’]ﬂlmwia:mﬁzaﬁpjﬂ'sy%’umﬁ'\mﬁh's
RN SILATUA 2 UnTAN 2011 A9 15 LB 2015 (1,565
T4) wazausn 1,306 Juwduratoyainiuuas 259 Tuiiu
Tatoyanasoy ufrasuuuiassfltluniswonnsaiie
Wisuifisudszdnsninde 39 persistence 1unvdszun
miﬁrmmv'i‘vugm, ARIMA, MLP, LSTM, Uazluu3aaduuy
wﬁmNmm’mmﬁﬁﬁqmaummﬁ"maa ARIMA, MLP L8z
LSTM (ensemble model) N&N13 AN¥INWLIN ensemble
model fUszansainluniswennsaliniteniuuuinass
5%6] lagdrnsUszsiiunnanisnennsaidIouifouudas
WUUE1889WL3N ensemble model 1#d1 RSME ﬁamﬁqﬂ
lag RSME 28981 A Wazs1 B LYiNAL 127.20 was 40.24
CRERETT pﬁﬁ‘fﬂﬁ@ﬂiﬂ AMVUABEIVBINITNENNTOIA 28
ensemble model 144 LAAIINNNT88NUULNTELUAIUMIALT 1
mMsngeuLLLsaes nasand laiwuadiwinSeadlwd
AP ENALLL LS 80 IUE HAp e ldvinnsfinaen
wuusaassnuansasatielwuilaindusuusiaesilen
miwmﬂmiﬁﬁqmmuﬂizmmaame‘i’maafu wenanit
g9ldinafia shufle waz dropout %aLﬁuﬂﬁia§ULLazz§uﬁa
node mn’%wﬁ’tu neural network 88N LAB8AANNUATENT
Fuwznunmanennssigadayalnduanniinly (overfitting)
PBIUUUTIRDI S'I?Mhﬂlﬁnﬂiwmmzﬁqwﬁagamaawm
I AR E Uk a A ia taks cL0

4.2 NMINLINIHAMNADINITIHANT LT YN

miﬂswqﬂ@i‘agﬂsunmﬁﬁ’mﬂ“ﬁﬁ'uamaLLwivﬁmy
Snuszmanitsda mawenIoinnudasn1siuen (Demand
forecasting) (Kotu & Deshpande, 2019) N1IN TRIEIYGRREY
@Taamiﬁuﬁ’]mminiifmﬂﬁﬂmﬁmﬁzﬁagﬂwanL@T

& Lo o a ) o
ANMNRIIVVUBELNUINWIUSVEIDIND ﬂ’]il“ﬁLL‘U‘Uﬁ]’]ﬂﬂd‘ﬂ’N

'
=

RO bNNTN mmnimm:ﬁ'mj”agaagﬂswnmmﬁ' Tuaueh
LLuuaiwaaamnmsﬁsuf‘waam%‘amnﬂizmmwwg\a
WUUS88INEN (hybrid model) usaldlun1swensoh
iagaﬁvlajmuau Wiagn M soiTlanwnlasTas 99
ﬂizﬁ‘n%m‘wmaaLLuuﬁﬁaaaﬁuagﬁuﬁﬁmaa‘ﬁagaﬁﬁmﬂ"ﬁ
woNaNH NMINENNIAIANUTEINNTAUAEI TN TOULAY
Frasnaasmsngnsoioanldidu 3 wfiade nswennsol
sruzam (37952109, 7185%) 1Fuuudiaosnanlunis
WeNToh L% ANN + ARIMA Ludn szaznand (3787%, e
LAau) mmsni“ﬁuum‘imaamu%ﬂujﬁmaLﬂéaa LT
Regression %38 Extreme gradient boosting (XGBoost) iu
@ WAz IIBULEIAN 13U LSTM, MLFANN w3a GAN Lilu
du #1nTuszerend (1ed) msltuuusnaeenieaiiaas
WENNIOLLAANTN LT ARIMA, Holt-Winter Laz Exponential
Smoothing tJud% wuvdNaaIndazlsziANIRNIZALNT
WENI LT I9L981 7L aNIZ181299 NIWEINTAIADY
gasnsaumnuinrlundszaninniyaiselisunsald
WasLuusaaadsale (Ingle et al., 2021)

nswenItieanofiwindnduwisiamamuas
dunuligidniy waazuSEnlunsiunasils AAAUY U
NNINE® LLa:ﬁi:aummﬁﬁL?ﬁﬂumiﬂ{uﬁﬂﬁﬁqiﬁ%ﬁLﬁu
Tldmeldanuddouudss aransalésn nanswensl
yamnyﬁﬁﬂi:'&w%mwmmmlﬁﬂu%;‘JJaLﬁﬂ@”ﬂﬁukﬂu
MIATHANNFNYATZAINANNADINTVDIZNEUAZ AU
FUAAINR I@]mawwzazmﬁaqmm%ﬂﬁumﬁﬁmw‘ﬁfyﬁu
anuriimelunatsgduuy 1w mMsRuEueasaasln
USunaunn mmﬂw‘"umagiﬁaﬁLﬁ'ugﬁu ngsedouved
wassUsznaninssinanislasanuaznsaaia Lfiﬂ@ﬂﬁ”’]
@da9nTlTe USENAaIaINITanE s laat19nuriaei
szuulggumusesnfanmaindsdanaduden n1sdam
uaziIEd miﬁﬁ'ugﬂﬁ']ﬁﬁmmaﬁﬁi’ﬁﬁ@Lngﬂmuquama
1AT9ATA MTRanMIINENIATRIANAINTARAINN TR
LﬂuﬂiziwﬁﬁuVfﬁ:uquﬂmu Lﬁaamn@gmmwmaa
wﬁmﬁmwﬁﬂu?aﬁéwﬁ@LLazwﬁwﬁmwfﬂmmmmmsﬁmq
é(gu (Merkuryevaa et al., 2019; Zadeh et al., 2014) Aa8g
mu‘ia‘i'ﬂﬁﬁmsﬁ’]mswmﬂmiavqmmnmmwmﬂmimm
gosmslumsldend asil

1.713ANB®1289 Zadeh LazAmaz (Zadeh et al.,
2014) lav¥innsdns13tnslunisnensalseauiovas
UIENHIGI8N1TNINTARARNTNLIAUAZNNTIATIEA
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133118 (network analysis) latlddayasaauameiian
28981 217 71813V EN e wAsnislulssinadninn
TavoyaLznauI T SVEIN MANLLETMITNY Touas
iﬁaquﬁﬁ%”um %‘apj’wﬁm 181 uazduineluudazidon
Wuszeziaa 36 Wheaw AIduviimsisuiisuuuudnaas
Ya9puaazensiaiedn 3 nuulasldinadia ARIMA,
Neural network W8 Hybrid neural network ﬁwv@l u’lslﬁﬁﬁed
dauﬁiaﬁwﬂ“ﬁauaﬁﬁmmﬁuw‘"nﬂ%aLé’uLLa:"l,ajﬁ
ANUFNNUTLT I lumiﬁnaammumam HAaE lanasas
’l,'ﬁmmauamimuuawmmaqmi’mﬂ’ﬁuu uwazdayanis
mwaamlunaﬁmmmnu Tamautanguadunannnms
AR LlATITN AN UFNNUWTVRILILARZIIHA1TAE
ldsunsunaufaiaes Ham 3@ INLIN wuUs1889 Hybrid
neural network 8310 uaug1 lun1IWEINTAININNIN
WuLS1R09au g dmadsadunansnensalilSouiiiauud

ATUUUIIRINLINUWLUTI88d Hybrid neural network 71 b

ﬁagamimwaamnq’mﬁmf‘fuﬁﬂﬁm MSE uaza1 MAE
NARIIINUULIINAY Hybrid neural network ﬁ'lﬁiasgams
P8V IEEMR DN é’afuﬂ'ﬁ’lﬁﬁia;ﬂaﬂ’ﬁmwaa
pinguidsanulunstinseuuuuiiaesdstinlwuuudiaesd
mmLLajuﬂﬁmnﬂ'ﬁuvl@TLﬁaamnﬁagamﬂnwaamma
Nom i lReIne

2. N13AN¥IVDI Saena WA A hE (Saena &
Suttichaya, 2019) ¥inn1sAnENANIWENATAUS N AN TN
gudalglunisinualsuimeinsnaiaslsonenuna v
anumanzan lagmaseuiisuuuusiaesmuanzayle
AIWENNTTIAIELINALA MLP, LSTM 1az 1D Convolutional
neural network (CNN) - LSTM shunumsldinadia Rolling
window 33 label Toyaiutrenmia 1, 6 uaz 12 1ieu Lite
WonTaiSuN BN fica9sateluti9iian 1 1eew 3 1iamw
WaT 6 LHaw iagaﬁlﬁ’lumﬁﬁ'ﬂLﬂm‘fagaﬂ']s’lﬁﬁms’lmﬁau
Agniufinlugrudeyaveslsewsnadeiys audiden
aa1au 1 2009 audsidaunusnsn 2015 WaIINEuE I
UMIIRUANITLATIZRERY ABC/VEN matrix tasatien
E19NNFN AV Godain 70% gaﬁwaamﬂ‘*ﬁmﬂ%malu
T59nenLa ﬂsmﬁmﬂumﬁﬁgammﬂ%ga (A) uaziduenil
A lunisinea (Vital V) 11w 10 518015 laun
Metformin tab. 500 mg, Enalapril tab. 5 mg, Enalapril tab 20
mg, Atenolol tab. 50 mg, Paracetamol tab 500 mg,

Paracetamol syr. 12 mg/5 ml, Omeprazole cap. 20 mg,

Salbutamol sulfate inh. 0.1 mg/dose, Chlorpheniramine syr.
2 mg/5 ml, Chlorpheniramine tab. 4 mg NAN1TANBINLIN
LUU31889 CNN-LSTM lWnan1swennsaifianin titasan
1D CNN anwWaru liaansniToud feature ldias vinlw
é"ana'%ﬁummmL“ﬁﬂﬂgmmuﬁﬁ@%ﬂmma: window be
waNaN# LSTM gefianumanzaaluniineininidaya
5fzmm'ﬂuagmm'sm HAN1TNEINTOIA B gL az e
error ﬁaﬂﬁq@ﬁmmuﬁmm CNN-LSTM 28481 salbutamol
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