

ฤทธิ์การต้านอนุมูลอิสระและการยับยั้งเอนไซม์ไทโรซีเนสของไหมเชริชินพันธุ์

UB1 X UB5 โดยเปรียบเทียบกับไหมเชริชินที่มีจาน่าำยทางการค้า

สุพัตรา บุตรราช, สุราสินี ทัพพสารพงศ์*

บทคัดย่อ

ฤทธิ์การต้านอนุมูลอิสระและการยับยั้งเอนไซม์ไทโรซีเนสของไหมเชริชินพันธุ์ UB1 X UB5 โดยเปรียบเทียบกับไหมเชริชินที่มีจาน่าำยทางการค้า

สุพัตรา บุตรราช และสุราสินี ทัพพสารพงศ์*

บทนำ: เชริชินเป็นโปรตีนจากรังไหม (*Bombyx mori*) ซึ่งสามารถสกัดได้ด้วยน้ำร้อน จากการศึกษารายงานการวิจัยและการศึกษาทางด้านเภสัชวิทยา พบว่า เชริชินมีฤทธิ์ทางด้านเภสัชวิทยาหลายประการ ได้แก่ การยับยั้งเอนไซม์กูลิโนทรีอี ยับยั้งอนุมูลอิสระ ยับยั้งการทำงานของเอนไซม์ไทโรซีเนส ฤทธิ์ต้านมะเร็ง นอกจากนี้ยังบังคับรังสียูวีและให้ความชุ่มชื้นกับผิวหนังได้ดี วัสดุและวิธีการ: การวิจัยครั้งนี้ได้ทำการสกัดเชริชินจากรังไหมพันธุ์ UB1xUB5 ด้วยน้ำร้อนที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 6 ชั่วโมง จากนั้นนำมาศึกษาหน้าห้นกมวลโมเลกุลของเชริชิน (UB1xUB5, จุลไหมไทยและแก้วหลวง) ด้วยวิธี SDS-PAGE และศึกษาฤทธิ์ยับยั้งการทำงานของเอนไซม์ไทโรซีเนสด้วยวิธี Dopachrome ผลการศึกษา: จากการศึกษาพบว่า เชริชินที่สกัดได้ด้วยวิธีการต้มในน้ำร้อนที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 6 ชั่วโมง ให้ปริมาณผงเชริชิน ร้อยละ 12.60 โดยน้ำหนัก ขนาดหน้าห้นกมวลโมเลกุลของไหมเชริชินอยู่ในช่วง 30-250 kDa สำหรับฤทธิ์ต้านอนุมูลอิสระ พบว่า เชริชิน UB1xUB5 มีค่า %scavenging activity สูงที่สุดเท่ากับ 70.00 เปอร์เซ็นต์ ในขณะที่เชริชินจุลไหมไทยและแก้วหลวงมีค่าเท่ากับ 16.67 และ 23.33 เปอร์เซ็นต์ ตามลำดับ และจากการศึกษาฤทธิ์ยับยั้งการทำงานของเอนไซม์ไทโรซีเนส พบว่า เชริชิน UB1xUB5, จุลไหมไทยและแก้วหลวง มีค่าการยับยั้งเอนไซม์ไทโรซีเนส เท่ากับ 33.33, 50.00 และ 50.00 เปอร์เซ็นต์ ตามลำดับ สรุปผล: จากฤทธิ์ทางชีวภาพของไหมเชริชินทั้งฤทธิ์ต้านอนุมูลอิสระและยับยั้งเอนไซม์ไทโรซีเนสนั้น มีความสำคัญต่อการนำไปประยุกต์ใช้อย่างมีศักยภาพในด้านผลิตภัณฑ์เสริมอาหาร อาหาร และอุตสาหกรรมเครื่องสำอาง

คำสำคัญ: เชริชิน, หนอนไหม, ฤทธิ์ยับยั้งการเกิดปฏิกิริยาออกซิเดชัน, ฤทธิ์ยับยั้งการทำงานของเอนไซม์ไทโรซีเนส

Abstract

Antioxidant and Antityrosinase activities of silk sericin from silkworm UB1 X UB5 comparison with commercial products

Buttarat S, Thapphasaraphong S*

Introduction: Silk sericin is a kind of water-soluble globular protein derived from silkworm, *Bombyx mori*. The studies in pharmacological activity found that sericin have some excellent properties; antimicrobial, antioxidant, antityrosinase, antitumor, UV resistant and moisture absorption. **Material and method:** In this study, we compared the pharmacological activity of sericin from different sources. One from UB1xUB5 extracted by hot water degumming at 100° C for 6 hours and other two sericin are available from commercial company (Chul Thai Silk and Kaewluang). The molecular weight of extracted sericin was evaluated by Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The antioxidant activities of sericin (UB1xUB5, Chul Thai Silk and Kaewluang) were compared by 2,2-Diphenyl-1-picryl-hydrazil radical scavenging activity (DPPH Assay) and

*ติดต่อผู้นี้พนธุ์: E-mail: sutpit1@kku.ac.th

*Corresponding author: E-mail: sutpit1@kku.ac.th

to determine antityrosinase activities using Dopachrome method. **Results:** The results showed that %yield of extracted sericin from UB1xUB5 was 12.60% w/w, molecular weight of UB1xUB5, Chul Thai Silk and Kaewluang were ranged between 30-250 kDa. For antioxidant activity was found that UB1xUB5 showed the highest %scavenging activity (70.00%), whereas Chul Thai Silk and Kaewluang were 16.67% and 23.33%, respectively. The antityrosinase activities of UB1xUB5, Chul Thai Silk and Kaewluang were 33.33%, 50.00% and 50.00%, respectively. **Conclusion:** The biological activities of sericin powder, including antioxidant activity and antityrosinase activity, which functions are important for potential applications of sericin to dietary supplements, food, and cosmetics industries.

Keywords: Sericin, Silkworm, Antioxidant activity, Antityrosinase activity

Introduction

Silk sericin is a kind of water-soluble globular protein derived from silkworm *Bombyx mori*, and represents a family of proteins whose molecular weight ranges from 10 to 310 kDa. Sericin envelops the fibroin fiber with successive sticky layers that help in the formation of a cocoon, constitutes about 20-30% of the total cocoon weight (Wu *et al.*, 2007). Sericin consists of 18 kinds of amino acids most of which have strong polar side groups such as hydroxyl, carboxyl, and amino groups (Wei *et al.*, 2005). Sericin is especially rich in aspartic acid (~19%) as well as serine (~32%), which has a high content of the hydroxyl group (Wu *et al.*, 2007; Kwang *et al.*, 2003). The chemical characterization of sericin influences the biological properties such as antioxidants activities, antityrosinase activities (Srihanam, 2011; Sarovart *et al.*, 2003). Tyrosinase is responsible for the biosynthesis of melanin in human skin, and tyrosinase inhibitors have been used in cosmetics as whitening agent (Sung *et al.*, 2011) and antioxidants have been used in dietary supplement and cosmetics to eliminate free radicals and reactive oxygen species the cause of several diseases and aging.

The objective of this study is to determine antioxidant and antityrosinase activities of the 3 kinds of sericin powder from different sources.

Material and method

Material

Cocoons of UB1xUB5 *Bombyx mori* silkworms were supplied by Queen Sirikit Sericulture Center (Khon Kaen Province, Thailand) and the commercial products of sericin powder were obtained from Chul Thai Silk co., Ltd (White

powder, Petchabun Province, Thailand) and Kaewluang co., Ltd (Yellow powder, Ratchaburi Province, Thailand).

Preparation of sericin powder

To obtain extracted sericin powder, UB1xUB5 silkworm cocoons were cut into small pieces and boiled with distilled water (1 g of silk cocoon and 30 ml of distilled water) at 100° C for 6 hours. The aqueous solution was evaporated and then filtered to remove insoluble materials. After that, the filtrate was frozen and freeze-dried using a lyophilizer (FD-3-55D, USA) to obtain silk sericin powder.

SDS-PAGE analysis

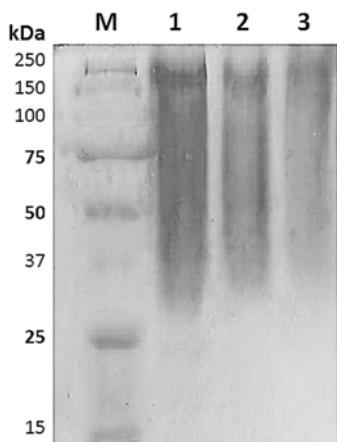
The silk sericin molecular weights from all samples were estimated by SDS-PAGE with 10% separating gel and 5% stacking gels. The system was run at 120 Volts using a Dual Mini Slab Kit (Bio-RAD, Mini-PROTEAN 3 Cell, USA) for 1 hour and then stained with Commassie Brilliant Blue R-250. The molecular weight was estimated by comparing with standard proteins of 10-250 kDa molecular weights (Bio-Rad Laboratories Inc., USA).

Measurement of free radical scavenging activity (DPPH assay)

For antioxidants activities study (DPPH assay), 100 µl of sericin was dissolved in distilled water (0.25 mg/ml) and 500 µl of freshly prepared DPPH radical in a methanol solution (0.1 mM) were mixed in 96-wells microplates. The absorbance of the reaction mixture was measured after 25 minutes using a microplate spectrophotometer at 490 nm. The %scavenging activity was calculated according to the following equation:

$$\% \text{ scavenging activity} = \left(1 - \frac{\text{Abs}_{\text{sample}}}{\text{Abs}_{\text{control}}} \right) \times 100$$

Measurement of antityrosinase activity


The study of antityrosinase activity, the 0.25 mg/ml of sericin solution (50 μ L) was added to a reaction mixture containing a 0.02 M sodium phosphate buffer (pH 6.8) and 314.8 units/ml mushroom tyrosinase (Sigma, USA). The mixture was then pre-incubated at 25 $^{\circ}$ C for 10 min before adding 50 μ L of 0.34 mM L-dopa (3,4-dihydroxyphenylalanine; Sigma, USA) solution and the reaction was monitored at 490 nm using Microplate reader (Model 680 microplate reader, Bio-RAD, UK). The %inhibition of tyrosinase activity was calculated as the below equation.

$$\% \text{inhibition of tyrosinase} = [(A-B)/A] \times 100$$

Where A represents the difference in the absorbance of the control sample between incubation time periods of 0 and 20 min, and B represents the difference in the absorbance of the test sample between the same incubation times.

Results

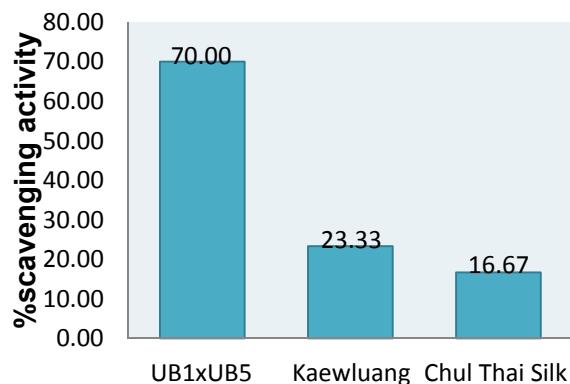
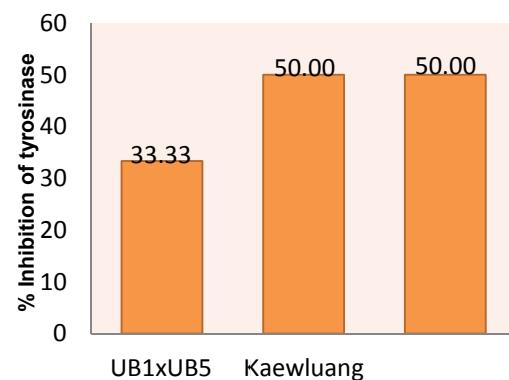

The yield of extracted silk sericin from UB1xUB5 was 12.60% w/w. The color of UB1xUB5 silk sericin powder was light yellow. To determine the molecular weight of silk sericin, the extracted silk sericin from UB1xUB5, Chul Thai Silk and Kaewluang showed molecular weight ranging from 30-250 kDa (Figure 1).

Figure 1. SDS-PAGE of silk sericin: UB1xUB5 (1), Chul Thai Silk (2) and Kaewluang (3)


The measurement of free radical scavenging activity (DPPH assay) was found that UB1xUB5 showed the highest %scavenging activity (70.00%), whereas Chul

Thai Silk and Kaewluang were 16.67% and 23.33%, respectively (Figure 2).

Figure 2. Scavenging activity of sericin on the 2,2-diphenyl-1-picryl-hydrazil (DPPH) radical.

Tyrosinase is responsible for the biosynthesis of melanin in human skin, and tyrosinase inhibitors have important roles in the cosmetics industry because of their skin-whitening effects. For antityrosinase activities, UB1xUB5, Chul Thai Silk and Kaewluang were obtained 33.33%, 50.00% and 50.00%, respectively (Figure 3).

Figure 3. %inhibition of tyrosinase of silk sericin UB1xUB5, Chul Thai Silk and Kaewluang

Conclusion

In this study, we could observe the difference of antioxidant and antityrosinase activity from 3 kinds of sericin, which are useful for the various applications such as dietary supplements, food and cosmetic products. The others activity of sericin will be further studies and compared with various silkworm strains and commercial products. The information can help us to develop sericin products for various fields in future.

Acknowledgement

The authors would like to thank Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Science, Khon Kaen University for Instrument Support.

References

Kwang, Y. C., Jae, Y. M., Yong, W. L., Kwang, G. L., Joo, H. Y., Hae, Y. K., Preparation of self-assembled silk sericin nanoparticles. *International Journal of Biological Macromolecules* 2003; 32: 36-42.

Sarovart S, Sudatis B, Meesilpa P, Brian P. G, Magaraphan R. The use of sericin as an antioxidant and antimicrobial for polluted air treatment. *Reviews on Advanced Materials Science* 2003; 5: 193-198.

Srihanam P. Screening of antioxidant activity of some *Samia ricini (Eri)* silks: comparison with *Bombyx mori*. *Journal of Biological Science* 2011; 11(4): 336-339.

Sung N-Y, Byun E-B, Kwon S-K, et al. Preparation and Characterization of High-Molecular-Weight Sericin by γ Irradiation. *Journal of Applied Polymer Science* 2011; 120: 2034-2040.

Wei, T., Li, M. Z., Xie, R. J. Preparation and structure of porous silk sericin materials. *Macromolecular Materials and Engineering* 2005; 290: 188-194.

Wu J-H, Wang Z, Xu S-Y. Preparation and characterization of sericin powder extracted from silk industry wastewater. *Food Chemistry* 2007; 103: 1255-1262.