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Swnigrinawlmiiwunueddulenaofia nofiaaudssn OATPIBT tawlmiluunuaddusn CYP3A4 uaz CYP3A5 waz
fasefsimliaes PXR uaz AR f8uiAgadasnunszuiwmsunuadtusnisadanlasamslwoaday uaadrslsiony
ToyavadliunuiGulusnvasuysddilinonules ﬂ"’aifumiﬁﬂm%‘qajal,ﬁumsﬁnmwamm"l,mwuﬁ%miamm.amaanmam"’a
yussn1 OATP1B1 toulafiuunuaddusn CYP3A4 uaz CYP3A5 uaziaindessioliaas PXR uas AR aisouiiaunal
LASNZITIG UL TARNLTITNI0IAYEE IBN1INARDI: LIRS HepG2 Uaz BeWo (5x10° Loaddangy) Tesumswnzias sl
DMNILIAESLTAs DMEM TLANde 10% FBS uasUusiunuamnasay folsunuiidn (0.5, 5 waz 10 uM) waznguaIugylaiusa
Fananloe (0.1% DMSO) 1iuszaziaan 24 $alug fiauania total RNA NIUFINNTATIITANNTUFAI08N A=A MRNA 289
CYP3A4, CYP3A5, OATP1B1, PXR uaz AhR da8inafia RT-gPCR Han1inaaas: LsunuAguainnsasnirlinisuaadaan
289 CYP3A4 Uz CYP3A5 NNt 4-6 111 PalmaaduziSonuuasioadust59sn luvmsidoinuil OATP1B1 gnonsildean
VliLquﬁﬁTjuvl,@Taﬂﬁqﬁﬁfﬂﬁﬁﬂ”@Lﬁmﬁﬂuﬁ'ﬂﬂéjwmuquﬂ%lumaﬁmﬁaﬁu (18-23 Y1) WAL TAaNZL5IN (2-4 111) aghelsfianu
Tsunaguldoninnsuaadaanaed PXR luioaausiSean uazdinanisiaadaanad PXR luoasuziSarnaneas lunanauni
Msugasaanyas AhR gninthagnsiividylaslsunaRdulsaduzSeduualidmamioni AR lumaduzssn agy:
ﬂavl,ﬂmimuqum‘nmmaaﬂmadﬁ‘iﬂﬂ 8 LS U IR UL AN ULANAINUIT A TR E N T A LA A ANt 5ITN bsuWuRSuTnI
1% OATP1B1, CYP3A4 uaz CYP3AS5 lulmasaulasr1unid AhR agndlsianunalnaisuaadaanvadiiv OATP1B1, CYP3A4
uaz CYP3A5 Iuwﬁaa‘mlﬁdinmagﬂmuqﬂﬂUﬁamﬁsﬁmﬁma?ﬁu6] wanuAkaan PXR uaz AhR
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Abstract

Effects of rifampicin on the expressions of drug transporter OATP1B1, drug metabolizing enzymes CYP3A4 and

CYP3AS5, and nuclear receptors PXR and AhR in human HepG2 and BeWo cells

Thongtham Suksawat', Kanokwan Jarukamjorn?, Waranya Chatuphonprasert®*
IJPS, 2019; 15(2) : 118-128
Received: 22 June 2018 Revised: 13 January 2019 Accepted: 16 January 2019

Rifampicin, an anti- tuberculosis drug, has been extensively reported for drug interaction due to its ability to induce
several metabolizing enzymes. Drug transporter OATP1B1, drug metabolizing enzymes CYP3A4 and CYP3AS5, and nuclear
receptors PXR and AhR, are involved in metabolism of a clinical drug, especially in hepatocytes. However, the information of
rifampicin on those genes in human placenta is still less. This study aimed to investigate the effects of rifampicin on the
expressions of OATP1B1, CYP3A4 CYP3A5, PXR and AhR, in hepatocellular carcinoma (HepG2) and choriocarcinoma (BeWo)
cells. Materials and method: HepG2 and BeWo cells (5x10° cells per well) were cultured in DMEM with 10% FBS and incubated
with rifampicin at the final concentrations of 0.5, 5 and 10 LM for 24 hours. Total RNAs were extracted and the mRNA expression
of each gene was determined by RT-gPCR. Results: Rifampicin induced the expression of CYP3A4 and CYP3A5 mRNA in
both HepG2 and BeWo cells for 4-6 fold. Likewise, the levels of OATP1B1 mRNA were significantly elevated by rifampicin,
compared to control group, in both HepG2 (18-23 fold) and BeWo (2-4 fold). However, rifampicin did not modify the expression
of PXR in HepG2 while it extensively suppressed the PXR mRNA in BeWo. On the other hand, the expression of AhR was
significantly induced by rifampicin in HepG2 but not in BeWo, only rifampicin at the lowest concentration test (0.5 UM) down-
regulated the AhR mRNA expression (p-value < 0.05). Conclusion: The regulatory mechanism of rifampicin was different
between HepG2 and BeWo cells. Rifampicin up-regulated the expression of OATP1B1, CYP3A4 and CYP3A5 in HepG2 cells,
at least in part, via the AhR pathway. However, the expressions of OATP1B1, CYP3A4 and CYP3A5 in BeWo cells might be
regulated by other receptors, beside PXR and AhR.

Keywords: rifampicin, hepatocellular carcinoma, choriocarcinoma, cytochrome P450, drug transporter, nuclear receptor
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NE\]“UQGVLE'LLWNWFIQ@%@QNWHLNGNQaﬂ“ﬂad@ﬁmuﬁidEJ’] OATP1B1 Lau%ﬁmmuaﬁfﬁmm CYP3A4 uaz CYP3AS5

waziladsssioliaas PXR was AhR luLﬁﬁaaﬁm%a@”wLLai:LEﬁaﬁmL%diﬂmamkmﬂ'

IDIY ﬁ;“ﬂ FITA Laza

N

gaza1sunlaniasy (xenobiotics) Lﬁamj”wzjs"mmﬂ

TUNINIZINYUASYNLNUNY afdu (metabolism) el

AUTTOBLVBIA1VUEIBN (drug transporter) Law'loailu
WUNUaAGue (drug metabolizing enzyme) waziiiafes
Jwwiiaas (nuclear receptor) AINENTIFIINBUAL
LWINTZABUED m’«awLﬁ@ﬂ*s:mummwimmmﬁLLuuleilﬁ
WRIIU (passive diffusion) Icﬂ Uﬂl%ﬂﬂﬂﬂﬂmauUﬂﬂNLﬂu
MBMW (physicochemical) Vo481 WaNINNHNIZLAIUMNT
uwsuuuldwaa9nu (active diffusion) 28948 TULAZRNT
LLﬂaﬂﬂaawmwﬁ@mﬂlui'mﬂwafugnmuqﬂ@w”a
mua&amiﬁlﬁaﬁmmﬁ (Xu et al., 2005) Ao organic anion
transporting polypeptides (OATPSs) %Mﬂu@ﬁﬁ’m’]mn“ﬁ%ﬂ
aunazdatduaraudsasdszian solute carrier (SLC)
transporters fLAEAITAINUNTYEIENTURZEHIUTUTRE
(Megan et al,, 2011) N3UFAIaNUI OATPs ONAIUAY
tudulu SLCO/SIco superfamily lag OATPs qugwﬁlfu
Fuunladidu 6 families uaz 11 lalawasy (isoforms) a1
Jauazaruaanuafsnwradntaazilululaseasne
(Hagenbuch and Gui, 2008) OATP1B1 81313nUIUanNn1Tg
n‘s:mwaamﬁﬁg’iwmﬂ (Yohei et al., 2003) lasn1s
LRAIDONVDI OATPs UAMUFUNIZUANAIINWAUDIBIZ
0171 OATP1B1 fianudnwizluduvasuywd (Abe etal,
1999) uaz OATP1B1 Lilw isoform AfimIuaasaanluauaas
uuwduInnin OATPs dug lastanizluiitardotu
basolateral UBILTARAL (Konig et al., 2000)

gnsuonlafluunuedfusfisadasiumuyas
gﬂmq’ﬁ'smwLﬁamiﬁﬁ@aaﬂmaqmuazmwa"@ﬁwaams
wdandaanainienme awloslalalasud 450 (CYPs) §
unuingaalunszuawnisiuunuadTueILazans
wdandaanlusrinie las CYPs wuninludy niadn
21717 la uazdaq lasn13inuun CYPs azandaiasas
anunilansasdnaunsaasdlultuns anfl CYP1, CYP2,
CYP3, CYP4 waz CYP7 (Xu et al., 2005) I(ﬂtl CYP3A4 uaz
cvyp3as Wnlelonesunfmauaasaanunluey &1l§ uaz
yagn wazdunuIngrudaluuNUadTueILAZETS
wdanuaawluduuazanlduyeed (McKinnon et al., 1995)

350 (placenta) 1naiazdrasidndnfuaniaomu

81781917 UITI9 87 §19LAT TINNIEN TN 9 nualg
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InluAI37 WazIn (Benirschke and Driscoll, 1967) 1dudn
ai’a’smﬁaﬁfiaﬁ metabolizing enzyme %mwﬁ@ﬁmﬁﬂﬁlu
mIasnutasenuazansne towlss cYPs sansanyla
Tusnasud lasunansusnuasmyninsss uazllaaanauasy
1998; Unadkat et al., 2004) LL§i
msdnsnfigataanuewls CYPs lusndaddayaatias

8187371 (Hakkola et al.,

w1 s lanalanisvausesiewlas cyps lusn az
Frgltmunsafdnsinszuiumadisnudassn iRy ns
MAUATEAITITIIVBIRIINE WIas1Inanz3ad19 9 lunds
a3 Lo Lmasila (BeWo cells) Lwaagannsndsanansn
Lﬁ'mhmuvl,ﬁ%mm;u suvafigndszney nMsugasasn
vaatawlasl CYPs Laz@IUuas (transporter) 6199 TnalAes
Ausn 39mNnsalmisaasliduluiaalunisdnsn
NITUIBMIUUNUDRTUULRZ M TVREIRNTANI ) Wwdnaan
n'le (Poulsen et al., 2009; Unadkat et al., 2004)
Ligand-regulated transcription factors nIafaades
Sunihaat diznaudionasduniifiddylunsidisy
20981 178 LaalaTauiiziliaa’ (estrogen receptor) nala
nasinauastwiiaas (glucocorticoid receptor) WazIandnua
Simiaas (vitamin D receptor) EnsUIWINIBBLIANII YIRS
(pregnane X receptor, PXR) kazua3a balasansuausiay
\aa3 (aryl hydrocarbon receptor, AhR) aduiiafesaioy
ma?ﬁmuqmmsmﬁmﬁﬂ/ﬁu SIn500A IR/ IuasRE
yasiuuazduTastsitsanyhassinasitimlinadde
uUantaanvadsnanig sf?amuqumnmmaanmaaﬁu
299L0% bod UL NN UBRTN LA VUEILN Lae AhR Hau
FagRunITuEaIaanvasiuiiineateslunszuannig
LNLNUBRD Y Taun CYP1A1, CYP1A2 as CYP1B1
wenaNil PXR uaz AhR J&Lﬂuﬁamﬁﬂ%mﬂma*fﬁmqu
mMavnnuwesdulumsiuunueddy msvuds nsfdaasn
2898NuacaILUaNLUaoN ANEAIUFLALTELG (steroids) LAz
ﬂiﬂﬁ’lﬁ (bile acids) muluseme (Ramadoss et al., 2005)
ﬁm%’uﬁu'ﬁ'gﬂmquim PXR L@l CYPs waz OATPs
atussanndulylddn PXR Sunuiniitieatesiunis
AOURLHEIVDY OATPs 628 (Moore and Kliewer, 2000)
IsunuANTw (rifampicin, 311“7'1' 1) Lf]u%ﬁaslugmm%é'ﬂ
lumsinmsimlsa (tuberculosis) filpddudasldondu
FTULIRIWIRUINNTN 3-6 Liaw TeFIuInsuaIATLN
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FEWINIBINIG CYPs ag19dnpda Y Tagianizagafe A5 NI5IVY
CYP3A Waz@1auaiend19¢ (Niemi et al., 2003) %anani 417103 - 911TLA89 HepG2 (HB-8065™ , ATCC

LunuRgudndudanszdu PXR Addsz&@naiw (Li and USA) Laz BeWo @a DMEM [+] 1g/L D-Glucose, [+] L-

Chiang, 2006) aﬂ‘ﬂamgﬂiqu,f]umuid OATPs @34 Glutamine, [+] 110 mg/mL sodium pyruvate, 10% fetal

(Justenhoven et al., 2011) waNINNUBINTIBITUAY bovine serum ( FBS), penicillin/ streptomycin/ neomycin

o o g ' o &
AMUFUNUTIZNINY AR LAZNTHUEINITURAIBONYDY oo v
(PSN) 31NUSHN Gibco®, USA a13naay taun dimethyl

cyp3ad figninitsainlanlsunuiduluioasau
U e & e A . sulfoxide (DMSO), nicotine, rifampicin (RIF), benzo[a]pyrene
(Rasmussen et al., 2017) adnnlsunuAGuisealiunuin

. . (BaP) 91nUIEN Sigma Aldrich, USA F13LAdENTY RT-
aanNITAIUANE W OATP1B1, CYP3A4, CYP3AS5, PXR LAY o ® o
4 o - P - gPCR 1@un ReverTraAce , reverse transcription buffer,

ARR T HepG2 az BeWo A3UUNITANHINIIILAIIZHNE
— random primer, 10mM dNTP mixture, SYBR Green | 8¢
"llE]le,iLLWMW‘ﬁ%@IE]ﬂ']iLLﬁWNE]EmﬂJa\‘]OATP1B’| wae CYPs - A o e ~ o
“ & ¢ e o Taq DNA polymerase L BN AN ®H VA IUITEN Toyobo
399849 PXR WAz AhR Naluioaanzi5iay (HepG2) uaz
. . cd o o . ( Osaka, Japan), Invitrogen™ (USA), Cambrex Bio Sci
LTRANELIITN (BeWo) Taduni+e TInULTnuuUdI 180989 co
. . R ) (USA), uaz Vivantis (Malaysia) uazlwsinassaaseilay
aiulzaunazInaNda autwetdudaualun1sdnsn e . 4
oA e .. * U3 Bio Basic Inc. (Canada) AILEAIUANTIIN 1
Hansznudadudinaluaysddaly

[O] [HOY/m,,,,

—

0] Q]

O,

N
S

[N]

',2 \
Z [O]
gﬂﬁ 1 lassarovad lsunangy
m’li’l\‘l‘ﬁ 1 lwsiwasdansy gPCR
Genes Product Annealing Forward primer Reward primer

size Temperature (5>—>>3) (5>>>3)

(bp) °c)
GAPDH 72 61.1 CACCATCTTCCAGGAGCGAG GACTCCACGACGTACTCAGC
CYP3A4 187 61.1 GCCTGGTGCTCCTCTATCTA GGCTGTTGACCATCATAAAAG
CYP3A5 245 61.1 CCTGAACCTCTCAGGAGCATTT AGATCAGAGGGCTGGTGAGTT
OATP1B1 135 60.2 GAGCAACAGTATGGTCAGCCT GGCAATTCCAACGGTGTTCA
PXR 117 61.1 ATGATCATGTCCGACGAGGC CCTGATCATCATCCGCTGCT
AhR 112 61.1 CAACAGCAACAGTCCTTGGC GTTGCTGTGGCTCCACTACT
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NE\]“UBGVLE'LLWNWFERQQNWHLN@GQaﬂ“ﬂad@ﬁmuﬁidEJ’] OATP1B1 Lau%ﬁmmuaﬁbﬁmm CYP3A4 uaz CYP3AS5

waziladsssioliaas PXR was AhR 1%@@Z\]FSJXL%J@WULLaiLEHQﬁNZL%diﬂ‘UENNRLHET

IDIY ﬁ;“ﬂ FITA Laza

ﬂ’litﬁwﬂamaﬁ’ - HepG2 (HB-8065™ ATCC,
Manassas, USA) LLaz BeWo (vl,@T%'umwméms']zﬁmn
Prof. Dr. Isabella Ellinger, Medical University of
Vienna, Austria) LWW:L??UG@%U DMEM+10% FBS+PSN

Assoc.

muldgmnil 37 °C Aanudn 95% LT wan 5x10° Load)
way 14 6-well plate 1l usznziaan 24 219 a1nsua
HepG2 Wwaz BeWo (n=5 waudanga) 1iue1e 0.1% DMSO
(NguAILAN) %30 bUWNATY (RIF) ANUTNTY 0.5, 5 uay
10 uM luszozioan 24 5alug las RIF azanslu DMSO #
ﬁmmvﬁwﬁuq@ﬁwyiuawmnﬁymmaﬁmﬁu 0.1% (v/v)
wadasruanuduRsdoirasvas DMSO

N15LA3 8 total RNA WAL RT-qPCR - Total RNA
anananmasnasnlimInaseuiduszoziian 24
ﬁ;ﬂu{l @187% guanidinium thiocyanate-phenol-chloroform
(Chomczynski and Sacchi, 1987) mmfuﬁwm'n”@mm
LﬁuiuLLazﬂmaaummauu“itﬁmaa RNA (RNA integrity)
gruaznlsaiandianlaswasida (1.25% agarose gel
electrophoresis) nowlUaswtdu cDNA saotanlas
ReverTraAce® (Toyobo, Osaka, Japan) @a35n13184U7 1N
W8I1NI % cDNA ﬁlzgnﬁmﬁmﬁzﬁlﬁaﬂ%mmﬁa
ATIFaUNITULRaAIBanTaInaazEud e lnTinaiAsmae
(@1357991 1) fMIVUHNTe1 qPCR Usenaveay Tag-buffer
(Vivantis), magnesium chloride (Vivantis), dNTP mixture
(Vivantis), forward/reverse primer (Bio Basic Inc. Canada),

SYBR Green | fluorescence dye (Cambrex Bio Sci) lLaz Taq

8.00 -
7.00
6.00

5.00

Average fold difference

DNA polymerase enzyme (Vivantis) @1335011328903 8N
nn Ul@nﬂéﬂd Lﬂllll]%ll'] m’ﬁ']iwy%qﬂiiu CFX96 Touch™,
Biorad (USA) 5237 ulUsunsy Bio-Rad-CFX manager
version 3.1 "i]']ﬂ‘lfuﬂ’]'il,lsﬁ@\'iﬂaﬂma\‘iﬁulaﬂ']‘lﬁur]ﬂﬂzgﬂﬁ:’] E\|
J5ulsidudn@ (normalized) Aufing1989 (reference gene)
fa Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

aﬁaﬁ‘lﬂumﬁtmwﬁﬁa§a - AULANGAIINIY
ghdnagavals comparative mean One-Way ANOVA
20Ny Turkey’s statistical post hoc test lasldsunsn SPSS
(version 11.0) ﬁ’]ﬁfﬂﬁm”tymmﬁauamﬁ *0<0.05 LA
*<0.001

NanN13298
N19LATER LTS A muaIn1TUEAIDaNYAY
&1 CYP3A4
MSUEAIBaNYEI CYP3A4 mRNA lu HepG2 tAndu
(3-6 1111) adsfipdanlas lsunuRGunnanutudy
(0.5, 5 8z 10 uM, p<0.001) LﬁﬂLﬂ?ﬂULﬁﬂUﬁ'ﬂﬂ@juﬂ’auqu
(0.1 %DMSO) ﬂ”@LLamlugﬂﬁ 2 uazlsunuRGuinnaudy
10 UM 8N TOLAREIIINTUEAIBaNTEI CYP3A4 MRNA
ldunfigaed1efiioidy daulu Bewo wudnlsuny
ﬁﬁ’ﬁuﬁmmLﬁuﬁuﬁaammwmﬁwﬁs (5 uaz 10 uM) §1U1I0
WAUNITLEAI88N28I CYP3A4 MRNA "Lﬁqﬁfu 2-2.5 1%
agIANBEATY (p<0.05) Lfial,ﬂ’%wl,ﬁﬂunmmjumuqu

DMSO | 0.5 M

RIF

HepG2

5 uM RIF (10 uM RIE| DMSO

* %
* 3%
K%
400 -
3.00 * "
2.00
0.00 |

0.5uM |5 pM RIF [10 pM RIF

RIF

BeWo

31 2 Ha2ad LTuNUREUAaN1TUFAI8aN2BI CYP3A4 mRNA i HepG2 uaz BeWo

DMSO, 0.1% dimethyl sulfoxide; Rif, rifampicin 0.5 uM, 5 uM, LLaz 10 uM. * p<0.05 ez ** p<0.001 VS DMSO.

122



Effects of rifampicin on the expressions of drug transporter OATP1B1, drug metabolizing enzymes CYP3A4 and CYP3A5,

and nuclear receptors PXR and AhR in human HepG2 and BeWo cells

Suksawat T. et al.

IJPS \\/—

Vol. 15 No. 2 April — June 2019 % t?
iy, i

A19LATIER IS mBaINITUEAIB AN DAY
&1 CYP3A5
TsunuAGuAnuTuT" 0.5, 5 uaz 10 uM LANNNS
uga9aanuay CYP3A5 mRNA lu HepG2 ldatnsfiundag
Lﬁatﬂ%mﬁmuﬁumjwmuqu (4-6 171, p<0.05) Tnwmuelu
BeWo fiiipslsunaRGuiianuidudu 10 uM Asansaiia
N3UEAIBaNYaY CYP3A5 mRNA ldadraiivodiary (2.7
i, p<0.05) (3U71 3)
n15AtAsIERIzelSN B INITUEAIB BNV
&1 OATP1B1
TsuNaRFUAMUTUTU 5 U8z 10 pM FINITDLAY
ANTUEAIBENTEI OATP1B1 mRNA 1 HepG2 laatinedl
mfsa%’m”agtfimﬂ'%ﬂuLﬁﬂuﬁunéjumuqu (18-23 17in,
p<0.001) (Eﬂ'ﬁ' 4) luvhuaadenwlsunuAdunigesniny
tuiiaunsainnsuaasaenaas OATP1B1 mRNA lu
BeWo "l,@”aziwﬁﬁfﬂéﬁﬂ”tyLﬁal,ﬂ%'ﬂmﬁﬂuﬁumjumuqu

(2-3.7 W71, p<0.05 U@z p<0.001, MUFIAL)

8.00 -
7.00 -
6.00 — %

5.00

4.00 —
3.00

2.00

Average fold difference

N1ILATIERIBIUS A uRINITUERID ANV
g1 PXR
mngﬂ‘ﬁl 5 ugadnduuwilidunisusadaanuas PXR
mRNA lu HepG2 w5 lifinpdragniadia lunsasenu
TrunaunULwIlun1saaadag19inedayveaIng
LRAI88NVBI PXR mRNA 11t Bewo las'lsuWunduainu
TUTH 5 Waz 10 uM (p<0.05 W&z p <0.001, ANE1AL)
n1ILAT TR LTI lS B BINSIEAYB BNV
&in AhR
TsunuRGuanuitutu 0.5 waz 10 UM FaNInLAY
MNIUEAID8NTEY ARR MRNA thndu 2 wihlu HepG2 o
agIltuEAL (p<0.001 uaz p<0.05 MNEIAL) (gﬂﬁ' 6)
Tunmaassnuiny lsunaREuRaNUTYTY 0.5 UM Wiiui
RAUNIANAMNILAAI8ENVEYI AhR mRNA lu BeWo

T ﬁ T

0.00

DMSO | 0.5 M

RIF

HepG2

5 uM RIF |10 pM RIF

DMSO | 0.5uM |5uM RIF |10 uM RIF

RIF

BeWo

311 3 Ha2ad LTuNUREUAaN1TUFAI8aN2BI CYP3A5 mRNA i HepG2 uaz BeWo

DMSO, 0.1% dimethyl sulfoxide; Rif, rifampicin 0.5 uM, 5 uM, LLaz 10 uM. * p<0.05 VS DMSO.
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NamaﬂiuwyﬁfﬁuﬂamﬁLLamaaﬂmaWﬁmudam OATP1B1 Lau%ﬁmmuaﬁfﬁmm CYP3A4 uaz CYP3AS5
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