

การวิเคราะห์ปริมาณเบอจีนในสารสกัดลำต้น *Mallotus repandus* โดยโครมาโทกราฟีของเหลวสมรรถนะสูงวัสดุภาคย้อนกลับ

ยลดา ศรีเศรษฐ์¹, วรัญญา จตุพรประเสริฐ², กนกวรรณ จากรุ่งจร^{3*}

¹ นักศึกษาหลักสูตรปรัชญาดุษฎีบัณฑิต สาขาวิชาวิจัยและพัฒนาเภสัชภัณฑ์ คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น จังหวัดขอนแก่น 40002

² ปร.ด. ผู้ช่วยศาสตราจารย์ คณะแพทยศาสตร์ มหาวิทยาลัยมหาสารคาม จังหวัดมหาสารคาม 44000

³ ปร.ด. รองศาสตราจารย์ กลุ่มวิจัยฤทธิ์ทางยาของผลิตภัณฑ์ธรรมชาติโดยเทคโนโลยีชีวภาพทางเภสัชศาสตร์ คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น จ. ขอนแก่น 40002

* ติดต่อผู้นิพนธ์: กนกวรรณ จากรุ่งจร คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น อำเภอเมือง จังหวัดขอนแก่น 40002 โทรศัพท์: 043-202305,
โทรศัพท์: 043-202379, อีเมล: kanok_ja@kku.ac.th

บทคัดย่อ

การวิเคราะห์ปริมาณเบอจีนในสารสกัดลำต้น *Mallotus repandus* โดยโครมาโทกราฟีของเหลวสมรรถนะสูงวัสดุภาคย้อนกลับ ยลดา ศรีเศรษฐ์¹, วรัญญา จตุพรประเสริฐ², กนกวรรณ จากรุ่งจร^{3*}

ว. เภสัชศาสตร์อีสาน 2561; 14(1) : 67-74

รับบทความ : 25 ตุลาคม 2560

ตอบรับ : 14 มกราคม 2561

เบอจีนจัดอยู่ในกลุ่มของสารโพลีฟีโนอล เป็นสารสำคัญของต้น *Mallotus repandus* ซึ่งมีฤทธิ์ทางเภสัชวิทยาในการต้านอนุมูลอิสระ การปักป้องตับ การต้านเชื้อแบคทีเรีย การต้านอักเสบและการควบคุมระบบภูมิคุ้มกัน วัตถุประสงค์: เพื่อพัฒนาและประเมินวิธีโครมาโทกราฟีของเหลวสมรรถนะสูงวัสดุภาคย้อนกลับ (RP-HPLC) สำหรับหาปริมาณเบอจีนในสารสกัดลำต้น *Mallotus repandus* วิธีการศึกษา: เทคนิค RP-HPLC วัสดุภาคย้อนกลับที่ใช้ร่วมกับคอลัมน์ชนิด Phenomenex Luna C18 (5 μm, 250 mm x 4.6 mm) ส่วนวัสดุภาคเคลื่อนที่ประกอบด้วยอะซีโตในไตรอลและน้ำ (10 : 90 โดยปริมาตร) อัตราการไหล 1 มิลลิลิตรต่อนาที การตรวจวัดเบอจีนที่ความยาวคลื่น 272 นาโนเมตร ผลการศึกษา: เวลาเรีบเนินชั้นของเบอจีนเป็น 10.885 นาที โดยไม่มีพีคของสารรบกวน การวิเคราะห์เบอจีนในช่วงความเข้มข้น 20-320 ไมโครกรัมต่อมิลลิลิตรแสดงความสัมพันธ์เชิงเส้นตรงที่ดี ($R^2 = 0.9999$) ความถูกต้องแสดงด้วยค่าร้อยละการคืนกลับเท่ากับ $93.22 \pm 1.49\%$ ความเที่ยงตรงภายในวันและระหว่างวันแสดงด้วยร้อยละของค่าเบี่ยงเบนมาตรฐานสัมพัทธ์เท่ากับ $0.57 - 1.48\%$ และ $0.19 - 1.70\%$ ตามลำดับ ขีดจำกัดของการตรวจวัดและขีดจำกัดของการวิเคราะห์เบอจีน 4.56 และ 15.20 มิลลิกรัมต่อมิลลิลิตร ตามลำดับ สารสกัดส่วนหนึ่งของลำต้น *Mallotus repandus* จากการสกัดด้วยวิธีซอกห์เลตและการหมักมีปริมาณเบอจีนสูงที่สุดเท่ากับ $12.67 \pm 0.26\%$ และ $19.38 \pm 0.63\%$ ของน้ำหนักแห้ง ตามลำดับ รองลงมาคือสารสกัดส่วนเมธานอล ($9.28 \pm 0.49\%$ และ $8.73 \pm 0.72\%$) และส่วนเอทานอล ($2.16 \pm 0.10\%$ และ $1.73 \pm 0.05\%$) ตามลำดับ สรุปผลการศึกษา: วิธีการวิเคราะห์เบอจีนด้วยเทคนิค RP-HPLC นี้ มีความจำเพาะ ความสัมพันธ์เชิงเส้นตรง ความถูกต้อง ความเที่ยงตรง และความไวที่ดีและเป็นที่ยอมรับได้ วิธีนี้สามารถใช้ในการวิเคราะห์ปริมาณเบอจีนในสารสกัดลำต้น *Mallotus repandus*

คำสำคัญ: *Mallotus repandus*, เบอจีน, โครมาโทกราฟีของเหลวสมรรถนะสูงวัสดุภาคย้อนกลับ

Quantitative Determination of Bergenin in *Mallotus repandus* (Willd.) Muell. Arg. Stem

Extract by Reverse Phase-High Performance Liquid Chromatography

Yollada Sriset¹, Waranya Chatuphonprasert² Kanokwan Jarukamjorn^{3*}

¹ Ph.D. Candidate in Research and Development in Pharmaceuticals, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002

² Ph.D. (Research and Development in Pharmaceuticals) Assistant Professor, Faculty of Medicine, Mahasarakham University, Mahasarakham 44000

³ Ph.D. (Pharmaceutical Sciences) Associate Professor, Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002

* Corresponding author: Kanokwan Jarukamjorn, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 Thailand

Tel: 043-202305, Fax: 043-202379 E-mail: kanok_ja@kku.ac.th

Abstract

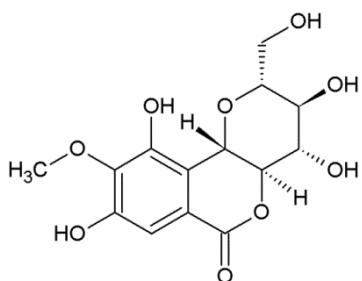
Quantitative Determination of Bergenin in *Mallotus repandus* (Willd.) Muell. Arg. Stem Extract by

Reverse Phase-High Performance Liquid Chromatography

Yollada Sriset, Waranya Chatuphonprasert Kanokwan Jarukamjorn^{3*}

IJPS, 2018; 14(1) : 67-74

Received : 25 October 2017


Accepted : 14 January 2018

Bergenin, a polyphenol compound, is a major active constituent of *Mallotus repandus* (Willd.) Muell. Arg. which possesses pharmacological activities including anti-oxidant, hepatoprotective, anti-microbial, anti-inflammatory, and immunomodulatory activities. **Objectives:** To develop and validate the reverse phase-high performance liquid chromatography (RP-HPLC) for quantification of bergenin in *M. repandus* stem extract. **Methods:** The RP-HPLC was employed with Phenomenex Luna C18 column (250 mm x 4.6 mm, 5 μ m) as stationary phase. The mobile phase consisted of acetonitrile : water (10 : 90 v/v), at a flow rate of 1 mL/min. The wavelength at 272 nm was used for detection of bergenin. **Results:** The retention time of bergenin was 10.885 min with no peak interference. The method at the bergenin concentration range of 20-320 μ g/mL was in a good linearity ($R^2 = 0.9999$). The accuracy measured as %recovery was $93.22 \pm 1.49\%$. The precision of within-day and between-day expressed as % relative standard deviation were of 0.57-1.48% and 0.19-1.70%, respectively. Limit of detection and limit of quantification were 4.56 and 15.20 μ g/mL, respectively. By the soxhlet extraction and maceration, the aqueous extract of *M. repandus* stem had the highest bergenin content of $12.67 \pm 0.26\%$ and $19.38 \pm 0.63\%$ dry% weight, respectively, followed by methanolic ($9.28 \pm 0.49\%$ and $8.73 \pm 0.72\%$) and ethanolic extracts ($2.16 \pm 0.10\%$ and $1.73 \pm 0.05\%$), respectively. **Conclusion:** The RP-HPLC method for determination of bergenin was achieved with good and acceptable specificity, linearity, accuracy, precision, and sensitivity. The utilization was assured by determination of bergenin content in the *M. repandus* stem extracts.

Keywords: *Mallotus repandus*, bergenin, reverse phase-high performance liquid chromatography (RP-HPLC)

Introduction

Mallotus species are a member of Eupobiaceae family. The most regions of distribution are tropical and subtropical areas in Asia such as Thailand, Cambodia, Vietnam, China, and India (Rievre et al., 2010). *M. repandus*, *M. philippensis*, *M. japonicas*, and *M. paniculatus* are examples of plants in this genus which have been usually employed as herbal drugs. *Mallotus* species contain abundant compounds such as polyphenols, diterpenoids, triterpenoids, and steroids (Tistaert et al., 2012). In particular, bergenin, a polyphenol compound, is derivative of dihydroisocoumarin. The main chemical structure of bergenin included trihydroxybenzoic acid glycoside and C-glycoside of 4-O-methyl gallic acid (Fig. 1) which has been claimed to possess anti-oxidant (Nazir et al., 2011; Yun et al., 2015; Khan et al., 2016), hepatoprotective (Lim et al., 2001), anti-microbial (Nazir et al., 2011), anti-inflammatory (Gao et al., 2015), and immunomodulatory activities (Nazir et al., 2007).

Fig.1. Chemical structure of bergenin

M. repandus (Willd.) Muell. Arg. is a potential herb which has long been basically used in Thai traditional medicine for the treatment of tendon inflammation and muscle pains including homeostatic maintenance (Wuttidhammad, 2007). *M. repandus* had been reported to demonstrate several pharmacological activities including anti-inflammatory (Hasan et al., 2014), analgesic (Hasan et al., 2014), and anti-oxidant activities (Lin et al., 1995). Bergenin was reported as the main compound of *M. repandus* (Li, 2006), but there is still no clear scientific evidence regarding quantitative determination of bergenin in *M. repandus*. Thus, it is of interest to quantitatively analyze the bergenin content in order to assure quality control and to support pharmacological activity of *M. repandus*.

The previous studies reported analytical methods for bergenin; for example, bergenin from *M. philippensis* and *Bergenia* species (*B. ciliata*, *B. stracheyi*, and *B. ligulata*) were quantified by high performance thin layer chromatography-mass spectrometry (HPTLC-MS) and high performance liquid chromatography (HPLC), respectively (Singh et al., 2007; Haribabu et al., 2012). Though there was not reported in the prior study about quantitative determination of bergenin in *M. repandus*, HPLC might be an appropriate technique due to be simultaneously qualitative and quantitative determination with a reasonable precise and accurate outcome (Aguilar, 2004).

The current study aimed to establish the quantitative method for bergenin using reverse phase (RP)-HPLC. The validation of the method was fully performed, in which the analytical parameters, namely specificity, linearity, accuracy, precision, limit of detection (LOD), and limit of quantification (LOQ) were established. To confirm utilization of the method, the bergenin content in the methanolic, ethanolic, and aqueous extracts of *M. repandus* stem by both soxhlet extraction and maceration were analyzed.

Materials and Methods

Chemicals and reagents

Standard bergenin (Cat. No. BP0258, purity > 98%) was a product of Biopurify Phytochemicals (Chengdu, China). Acetonitrile (HPLC grade) was purchased from Merck (Darmstadt, Germany). All other laboratory chemicals were of the highest purity available from chemical suppliers.

Plant material

M. repandus stem was obtained from Yasothon Panich herbal store (Yasothon, Thailand) in May, 2016. The specimen was identified as PANPB- MR 2016- 001 and deposited in the Herbarium of Faculty of Pharmaceutical Sciences, Khon Kaen university.

Preparation of *M. repandus* extract

The stems of *M. repandus* were dried at 50°C and ground into fine powder. The dried powder (10 g) was extracted by two different methods comprising soxhlet extraction and maceration. For the soxhlet extraction, the powder was extracted with methanol, or ethanol for 3 h, or

water for 6 h using a soxhlet apparatus. For the maceration, the powder was macerated three times with methanol, ethanol, or water for 3 days. Both of the methanolic and ethanolic extracts were evaporated by using a rotary evaporator and then freeze-dried while the aqueous extract was only freeze-dried. A-50 mg aliquot of the dried powder (methanol, ethanol, and water parts) was accurately weighed about 50 mg and dissolved in 1 mL of methanol, ethanol, or water, respectively. After the mixture was vortexed for 5 min, it was centrifuged at 2,000 g for 20 min. The supernatant was collected, followed by filtration through a 0.45 μm -membrane filter before subjected to the RP-HPLC system. Each sample was analyzed for 5 replicates.

Standard preparation

Bergenin standard was accurately weighted about 1 mg and diluted with 1 mL of methanol to obtain standard stock solution of 1 mg/mL. A standard stock solution was serially diluted with methanol to have concentrations of 20, 40, 80, 160, and 320 $\mu\text{g}/\text{mL}$, respectively.

RP-HPLC system

The separation was performed on a RP- HPLC system 1100 series Agilent (Waldbronn, Germany) , consisting of an isocratic pump, a variable wavelength programmable UV detector system, a manual injector, and ChemStation as the operating software. Phenomenex[®] Luna C18 column (particle size 5 μm , 250 mm x 4.6 mm i. d. , Phenomenex[®], Torrance, CA, USA) was used as the stationary phase. The mixture of acetonitrile and water (10 : 90 v/v) was employed as the mobile phase and filtered through a 0.45 μm -membrane filter prior to use. The flow rate of mobile phase was constant at 1 mL/ min. The wavelength was set at 272 nm. The 20 μL -fixed loop Rheodyne[®] was equipped.

Method validation

The chromatographic method was developed and validated in accordance with the International Conference on Harmonization (ICH) guideline (2005) , including analytical parameters of specificity, linearity, accuracy, precision, and sensitivity (LOD and LOQ).

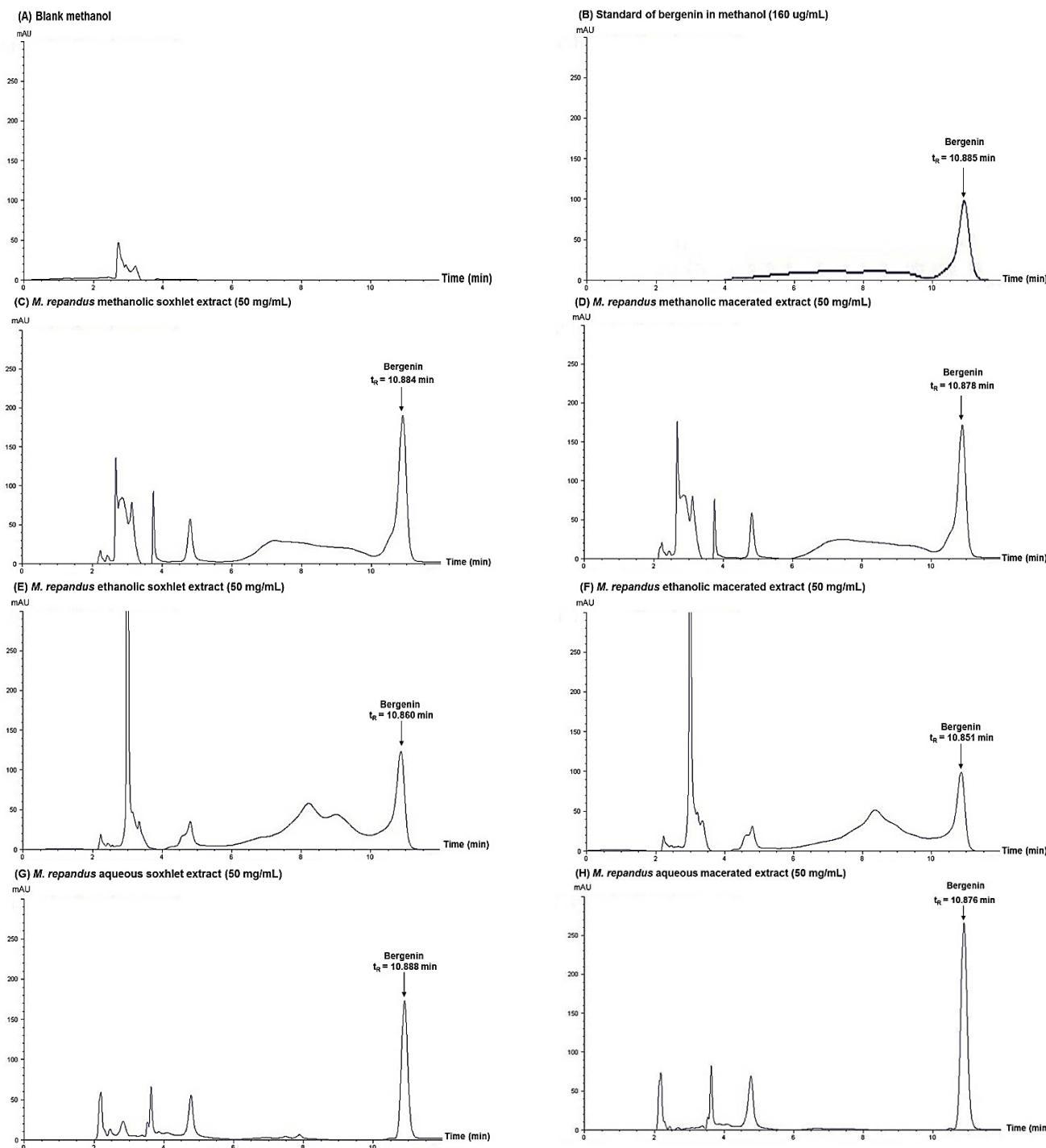
Specificity was determined by the relative retention time of bergenin in the extract to the standard.

Linearity was estimated by correlation coefficient (R^2) of calibration graph from a series of bergenin standard (20, 40, 80, 160, and 320 $\mu\text{g}/\text{mL}$). The calibration line was constructed by plotting peak area versus concentration to obtain a linear equation. The slope and y- intercept of calibration line were presented.

Accuracy was evaluated by percentage of recovery (% recovery) from triplicates of different concentrations of bergenin standard (30, 60, and 120 $\mu\text{g}/\text{mL}$).

Precision was assessed as within-day and between-day variations by subjecting a series of five bergenin standard (20, 40, 80, 160, and 320 $\mu\text{g}/\text{mL}$) for 5 replicates and 5 different days, respectively (n=5). The percentage of relative standard deviation (% RSD) of peak area was calculated to demonstrate the within-day and between-day precision.

LOD and LOQ were calculated from the standard deviation of the linear regression line (S_B) and y-intercept (Y_B) using the equations: $Y = 3S_B + Y_B$ for LOD and $Y = 10S_B + Y_B$ for LOQ. Then the value Y was substituted in the linear regression equation to achieve LOD or LOQ, respectively


Results

The validation method was performed to confirm an optimization of RP- HPLC system. This method was demonstrated to be good specificity, linearity, accuracy, precision, and sensitivity for quantitative determination of bergenin.

The RP- HPLC method was assured a good specificity for bergenin. The retention time of bergenin standard was 10.885 min. No peak interference around the retention time of bergenin was noted (Fig. 2B), compared with the blank methanol (Fig 2A) . The good linearity between the concentration range of bergenin from 20 to 320 $\mu\text{g}/\text{mL}$ and the peak area at UV 272 nm was achieved. The linear regression equation of calibration curve, $Y = 14.688X - 55.893$ with $R^2 0.9999$ (Table 1), was established in the accepted criteria of the ICH guideline that R^2 not less than 0.990 (ICH, 2005). The method indicated the good accuracy with the %recovery of $93.22 \pm 1.49\%$ (Table 1) that fit to the ICH guideline (2005) of 90-110%. The %RSD of both within-

day and between-day precision in the concentration range of bergenin from 20 to 320 $\mu\text{g}/\text{mL}$ were 0.57 - 1.48% and 0.19 - 1.70% , respectively (Table 1), confirmed the high precision of the method and met the ICH guideline that

%RSD not more than 2% (ICH, 2005). The method showed a good sensitivity with the LOD and LOQ of bergenin at 4.56 $\mu\text{g}/\text{mL}$ and 15.20 $\mu\text{g}/\text{mL}$, respectively (Table 1).

Fig. 2. Chromatogram of (A) blank methanol, (B) bergenin standard (160 $\mu\text{g}/\text{mL}$), and *M. repandus* (50 mg/mL) (C) methanolic soxhlet extract, (E) ethanolic soxhlet extract, (G) aqueous soxhlet extract, (D) methanolic macerated extract, (F) ethanolic macerated extract, and (H) aqueous macerated extract at the wavelength of 272 nm

Table 1 Validation parameters of the analytical method for quantification of bergenin in *M. repandus* extract

Linearity (concentration ranged 20-320 $\mu\text{g/mL}$)	
Linear regression equation	$Y = 14.688X - 55.893$
R^2	0.9999
Accuracy	
%Recovery	93.22 ± 1.49
Precision (%RSD, concentration ranged 20-320 $\mu\text{g/mL}$)	
Within-day	0.57 - 1.48
Between-day	0.19 - 1.70
Specificity	
Wavelength at 272 nm	No peak interference
Retention time (min)	10.885
Sensitivity	
LOD ($\mu\text{g/mL}$)	4.56
LOQ ($\mu\text{g/mL}$)	15.20

Determination of bergenin in the *M. repandus* stem extracts

The developed method was utilized to analyze the bergenin content in the *M. repandus* extracts. For the soxhlet extraction, the contents of bergenin in the *M. repandus* methanolic, ethanolic, and aqueous extracts were 9.28 ± 0.49 , 2.16 ± 0.10 , and $12.67 \pm 0.26\%$ dry weight, respectively, (Table 2), with relative retention time to the

bergenin standard of 0. 9999, 0. 9977, and 1. 0003, respectively (Fig. 2C, 2E, and 2G). Likewise, for the maceration, the contents of bergenin in the *M. repandus* methanolic, ethanolic, and aqueous extracts were 8.73 ± 0.72 , 1.73 ± 0.05 , and $19.38 \pm 0.63\%$ dry weight, respectively, (Table 2), with relative retention time to the bergenin standard of 0. 9994, 0. 9969, and 0. 9992, respectively (Fig. 2D, 2F, and 2H).

Table 2 Bergenin content in the extracts of *M. repandus*

<i>M. repandus</i> extracts	Bergenin content (%dry weight)	Retention time (min)
Soxhlet extraction		
Methanol	9.28 ± 0.49	10.884
Ethanol	2.16 ± 0.10	10.860
Water	12.67 ± 0.26	10.888
Maceration		
Methanol	8.73 ± 0.72	10.878
Ethanol	1.73 ± 0.05	10.851
Water	19.38 ± 0.63	10.876

Discussion and conclusion

The validation of RP-HPLC method is an essential process to assure qualitative and quantitative determination of a compound in order to provide a reliable, precise, and accurate result (Shabir et al., 2003). The developed RP-HPLC method for determination of bergenin in the *M. repandus* extract was well validated for specificity, linearity, accuracy, precision, and sensitivity, in accordance with the acceptable criteria of ICH guideline (2005).

Bergenin is the major active compound in the *M. repandus* stem. Hence, the quantification of bergenin in *M. repandus* is indispensable study for the quality control of medicinal plant. Although the determination of bergenin in *M. repandus* stem has not been reported, there were several methods for the determination of bergenin in other plant such as *M. philippinensis*, *B. ciliata*, and *B. stracheyi* using HPTLC-MS and HPLC (Singh et al., 2007; Haribabu et al., 2012). HPLC is an appropriate and useful tool for simultaneously qualitative and quantitative determination because it is a simple and highly precise technique (Loescher et al., 2014). In the present study, HPLC is considerably employed to determine the bergenin content of the *M. repandus* stem.

Soxhlet extraction and maceration are the common techniques for obtaining phytochemicals. These two methods were used in the present study. An extraction time of soxhlet technique is shorter than maceration and an amount of solvent for soxhlet extraction is less than maceration. Whereas soxhlet extraction is complicated about equipment setup, maceration is simple (Majekodunmi, 2015). The extraction of bioactive compounds from plants depends on the solvent. Regarding Thai traditional remedies, *M. repandus* stem is commonly brewed in water. Additionally, both methanol and ethanol were used as the solvent of bergenin for pharmacological studies (Lim et al., 2001; Nazir et al., 2007; Gao et al., 2015; Khan et al., 2016). To identify and confirm the appropriate solvent, water, methanol, and ethanol were then employed as the extraction solvents for quantitative analysis of bergenin in the *M. repandus* stem.

repandus stem. The content of bergenin was mostly found in the aqueous extract, followed by the methanolic and ethanolic extracts, corresponding to the structure of bergenin with hydrophilic glycone part, namely trihydroxybenzoic acid glycoside (Zhou et al., 2008; Pushpalatha et al., 2015). Therefore, bergenin was extracted the best by water, followed by methanol and ethanol, respectively. Correspondingly, in Thai traditional remedies, *M. repandus* stem is simply boiled in water.

In conclusion, the RP-HPLC method for determination of bergenin in the *M. repandus* stem was established. This method was well validated in terms of specificity, linearity, accuracy, precision, and sensitivity (LOD and LOQ), and successfully utilized for quantitative analysis of bergenin in the *M. repandus* stem extracts.

Acknowledgements

The authors sincerely thanks the Graduate School, Khon Kaen University, Thailand, for scholarship (601H215) and the Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology (PANPB) and Faculty of Pharmaceutical Sciences for the grant and facilities.

References

- Aguilar MI. Reversed-phase high-performance liquid chromatography. *Methods Mol Biol* 2004; 251: 9-22.
- Gao XJ, Guo MY, Zhang ZC, Wang TC, Cao YG, Zhang NS. Bergenin plays an anti-Inflammatory role via the modulation of MAPK and NF- κ B signaling pathways in a mouse model of LPS-induced mastitis. *Inflammation* 2015; 38(3): 1142-1150.
- Haribabu K, Ajitha M, Ramesh B, Babu K, Rao J. Quantification of bergenin from *Mallotus philippinensis* by HPTLC-MS and study on different extraction methods. *J Planar Chromat* 2012; 25(5): 445-449

Hasan M, Uddin N, Hasan R, Islam M, Hossain M, Rahman AB, et al. Anagesic and anti-inflammatory activities of leaf of *Mallotus repandus* (Willd.) Muell. Arg. *Biomed Res Int* 2014; 1-7.

International Conference on Harmonization (ICH) of Technical Requirements for the Registration of Pharmaceuticals for Human use. Validation of analytical procedures: text and methodology Q2(R1). Geneva, Switzerland; 2005.

Khan H, Amin H, Ullah A, et al. Antioxidant and Antiplasmodial Activities of Bergenin and 11-O-Gallylbergenin Isolated from *Mallotus philippensis*. *Oxid Med Cell Longev* 2016; 1-6.

Li TSC. Taiwanese native medicinal plants: phytopharmacology and therapeutic values. New York: CRC press; 2006.

Lim HK, Kim HS, Choi HS, et al. Effects of bergenin, the major constituent of *Mallotus japonicus* against D-galactosamine-induced hepatotoxicity in rats. *Pharmacology* 2001; 63(2): 71-75.

Lin JM, Lin CC, Chen MF, Ujiie T, Takada A. Scavenging effect of *Mallotus repandus* on active oxygen species. *J Ethnopharmacol* 1995; 46(3): 175-181.

Loescher CM, Morton DW, Razic S, Agatonovic-Kustrin S. High performance thin layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) for the qualitative and quantitative analysis of *Calendula officinalis*-advantages and limitations. *J Pharm Biomed Anal* 2014; 98: 52-59.

Majekodunmi SO. Review of extraction of medicinal plants for pharmaceutical research. *Merit Res J Med Med Sci* 2015; 3(11): 521-527.

Nazir N, Koul S, Qurishi MA, et al. Immunomodulatory effect of bergenin and norbergenin against adjuvant-induced arthritis—a flow cytometric study. *J Ethnopharmacol* 2007; 112(2): 401-405.

Nazir N, Koul S, Qurishi MA, Najar MH, Zargar MI. Evaluation of antioxidant and antimicrobial activities of bergenin and its derivatives obtained by chemoenzymatic synthesis. *Eur J Med Chem* 2011; 46(6): 2415-2420.

Pushpalatha HB, Pramod K, Devanathan R, Sundaram R. Use of bergenin as an analytical marker for standardization of the polyherbal formulation containing *Saxifraga ligulata*. *Pharmacogn Mag* 2015; 11: 60-65.

Rieivre C, Hong VNT, Hong QT, et al. *Mallotus* species from Vietnamese mountainous areas: Phytochemistry and pharmacological activities. *Phytochem Rev* 2010; 9: 217-253.

Shabir GA. Validation of high-performance liquid chromatography methods for pharmaceutical analysis: Understanding the differences and similarities between validation requirements of the US Food and Drug Administration, the US Pharmacopeia and the International Conference on Harmonization. *J Chromatogr* 2003; 987: 57-66.

Singh DP, Srivastava SK, Govindarajan R, Rawat KS. High-performance liquid chromatographic determination of bergenin in different *Bergenia* species. *Acta Chromatogr* 2007; 19: 246-252.

Tistaert C, Dejaegher B, Chataigne, et al. Potential antioxidant compounds in *Mallotus* species fingerprints Part II: Fingerprint alignment, data analysis and peak identification. *Anal Chim Acta* 2012; 721: 35-43.

Yun J, Lee Y, Yun K, Oh S. Bergenin decreases the morphine-induced physical dependence via antioxidative activity in mice. *Arch Pharm Res* 2015; 38: 1248-1254.

Wuttidhammad W. The Rattanakosin pharmacy ancient book. Bangkok: Odian store; 2007.

Zhou D, Qin X, Zhang ZR, Huang Y. Physicochemical properties of bergenin. *Pharmazie* 2008; 63(5): 366-371.