

การทดสอบความเป็นพิษต่อเซลล์มะเร็งของผลิตภัณฑ์น้ำมันรำข้าว

Cytotoxicity Test on Cancer Cells of Rice Bran and Germ Oil

ปภาวดี คล่องพิทยาพงษ์,¹ รุ่งตะวัน สุภาพพล,² วรอนงค์ พฤกษาภิจ,¹ พรพรรณารี ชัยวิชิต¹

บทคัดย่อ

โครงการวิจัยนี้เป็นการศึกษาผลของผลิตภัณฑ์น้ำมันรำข้าวว่ามีผลต้านการเจริญเติบโตของเซลล์มะเร็งตับได้จริง หรือไม่ด้วยวิธี MTT จากการศึกษาผลของผลิตภัณฑ์น้ำมันรำข้าวต่อการเจริญเติบโตของเซลล์มะเร็งตับเป็นเวลา 1, 4 และ 7 วัน พบว่าผลิตภัณฑ์น้ำมันรำข้าวจาก 2 แหล่ง ที่ความเข้มข้นระหว่าง 0 - 0.6 มิลลิกรัมต่อมิลลิลิตร สามารถลด การเจริญเติบโตของเซลล์มะเร็งตับได้อย่างมีนัยสำคัญทางสถิติในลักษณะที่ประตามขนาดและเวลาที่เพิ่มขึ้นด้วยค่าความ เข้มข้น IC₅₀ 0.274 + 0.004 และ 0.127 + 0.006 มิลลิกรัมกรัมต่อมิลลิลิตร ที่เวลา 7 วัน โดยไม่สามารถกำหนดค่า IC₅₀ ที่เวลา 1 และ 4 วัน ได้เนื่องจากผลิตภัณฑ์น้ำมันรำข้าวจาก 2 แหล่ง ที่ช่วงความเข้มข้นดังกล่าวไม่สามารถลดการเจริญ เติบโตของเซลล์ได้มากกว่า 50 % สันนิษฐานว่าน้ำมันรำข้าวอาจไม่เฉพาะเจาะจงต่อมะเร็งตับ หรืออาจจะไม่ออกรุทธิ์ ต่อเซลล์มะเร็งในทางตรง แต่อาจออกฤทธิ์ทางอ้อมผ่านทางการยับยั้งการแพร่กระจายของเซลล์มะเร็ง

คำสำคัญ : Anticancer, proliferation assay, inhibition concentration, MTT, rice bran oil

Abstract

The antiproliferative effect of rice bran oil to human liver cancer cells was studied via MTT assay. Two commercial rice bran oil at the concentration range of 0 - 0.6 mg/ml can significantly inhibit growth rate of liver cancer cells with dose- and time-dependent manner. IC₅₀ of 1 and 4 day exposure were not assessed due to the lower growth rate than 50 % while IC₅₀ of 7 days were 0.274 + 0.004 and 0.127 + 0.006 mg/ml. It might be possible that rice bran oil contains indirect effect antimetastasis or non-specificity to liver cancer.

Keywords : Anticancer, proliferation assay, inhibition concentration, MTT, rice bran oil

¹ อาจารย์ประจำ, คณะเภสัชศาสตร์ มหาวิทยาลัยอีสเทิร์นเอเชีย เบอร์โทรศัพท์ 02-577-1028-31 ต่อ 373

² อาจารย์ประจำ, คณะแพทยศาสตร์ มหาวิทยาลัยศรีนกรินทร์วิโรจน์ โทรศัพท์ 02-260-2112 ต่อ 4702, 4703

ความนำ

ความสำคัญและที่มาของปัจจุบัน

ปัจจุบันมีการนำผลิตภัณฑ์จากน้ำมันรำข้าวมาใช้เป็นอาหารเสริมกันอย่างแพร่หลาย โดยที่ยังไม่มีหลักฐานการวิจัยทางการแพทย์อย่างแน่ชัด โดยเฉพาะความสามารถในการต้านมะเร็งซึ่งมีหลักฐานน้อยมากจนไม่สามารถยืนยันได้แน่นอนว่ามีฤทธิ์ต้านหรือใช้รักษามะเร็งได้จริง ๆ หรือไม่ ในขณะที่อุบัติการณ์เกิดโรคมะเร็งเพิ่มสูงขึ้นทั่วโลก รวมทั้งประเทศไทย การกล่าวอ้างว่าผลิตภัณฑ์จากน้ำมันรำข้าวสามารถต้านมะเร็งได้ทำให้มีผู้บริโภคจำนวนมาก เชื่อถือและซื้อมาบริโภคโดยอาศัยความเชื่อส่วนบุคคล

การค้นคว้าวิจัยทางการแพทย์ปัจจุบันเพื่อยืนยันประสิทธิภาพในการต้านมะเร็งของผลิตภัณฑ์จากน้ำมันรำข้าวจะช่วยตอบคำถามดังกล่าวข้างต้นได้เป็นอย่างดี กล่าวคือหากผลิตภัณฑ์จากน้ำมันรำข้าวมีความสามารถต้านมะเร็งได้จริง จะจำเพาะต่อมะเร็งชนิดใดหรือไม่ มีผลต่อเซลล์ปักติดหรือไม่ มีกลไกการออกฤทธิ์เป็นอย่างไร แต่หากผลิตภัณฑ์จากน้ำมันรำข้าวไม่สามารถต้านมะเร็งได้จริงก็จะยังคงเป็นประโยชน์ต่อผู้บริโภคคือไม่ต้องเสียทรัพย์โดยไม่จำเป็น และมุ่งรักษาทางการแพทย์สมัยใหม่ เสียตังค์แต่แรก ๆ ก่อนที่จะสูญเสียโอกาสทองไป เพราะมะเร็งในระยะเริ่มแรกหลายชนิดสามารถรักษาให้หายขาดได้หากรับไปพบแพทย์

วัตถุประสงค์อีกประการหนึ่งของโครงการวิจัยนี้คือการทดสอบความปลอดภัยเบื้องต้นของการนำผลิตภัณฑ์จากน้ำมันรำข้าวมาใช้ เนื่องจากปัจจุบันมีผู้นิยมนำผลิตภัณฑ์จากน้ำมันรำข้าวมาบริโภคเป็นอาหารบำรุงสุขภาพหรืออาหารเสริม (health food) กันมาก การทดลองว่าผลิตภัณฑ์จากน้ำมันรำข้าวปลอดภัยต่อเซลล์ปักติดจะทำให้การบริโภคเป็นไปได้ด้วยความมั่นใจมากยิ่งขึ้น

ดังนั้น โครงการวิจัยนี้จึงน่าจะเป็นประโยชน์ต่อผู้นิยมบริโภคผลิตภัณฑ์จากน้ำมันรำข้าวไม่ว่าผลการวิจัยจะเป็นไปในทางบวกหรือลบก็ตาม แต่ค่าเฉลี่ยก็มีน้อยในระดับหนึ่งว่าผลิตภัณฑ์จากน้ำมันรำข้าวน่าจะมีฤทธิ์ต้านมะเร็งได้ ซึ่งอาจเป็นกลไกโดยตรงที่สามารถพิสูจน์ได้ใน

โครงการวิจัยนี้ หรืออาจเป็นกลไกโดยอ้อมที่ต้องมีการพิสูจน์ในระดับสูงต่อไป

ผลิตภัณฑ์จากน้ำมันรำข้าว น้ำมันรำข้าวประกอบด้วยสารสำคัญหลายชนิด เช่น โทโคฟีโรล โทโคไตรอีนอล แแกมมา-օไฮชาโนล แแกมมา-อะมิโน-บิวไทริกแอซิด (GABA) สารต้านอนุมูลอิสระที่สำคัญคือ โทโคฟีโรล โทโคไตรอีนอล และแแกมมา-օไฮชาโนล (Juliano et al 2005) ในส่วนของแแกมมา-օไฮชาโนล ได้มีศึกษาวิจัยพบว่าเป็นสารสำคัญที่มีฤทธิ์ลดระดับคลอเลสเตอรอลในเลือด (Miura et al 2006) และสารที่มีคุณสมบัติเป็น anti-anxiety คือ แแกมมา-อะมิโน-บิวไทริกแอซิด(GABA) (Kamatsuzaki et al 2005) เป็นต้น

ประเด็นวิจัย

รายงานหลายฉบับกล่าวถึงฤทธิ์ของน้ำมันรำข้าวเกี่ยวข้องกับ lipid profile และยังรวมไปถึงฤทธิ์ต้านปฏิกิริยาออกซิเดชันที่อาจเกี่ยวข้องกับมะเร็งได้อีกด้วย โครงการวิจัยนี้จึงมีวัตถุประสงค์ระยะเริ่มต้นที่เน้นการศึกษาเกี่ยวกับความสามารถในการต้านมะเร็ง โดยเริ่มจาก การศึกษาการยับยั้งการเจริญเติบโตของเซลล์มะเร็ง และเลือกใช้เซลล์มะเร็งตับซึ่งเป็นมะเร็งลำดับต้น ๆ ที่พบมากในประเทศไทย และวัตถุประสงค์ระยะยาวในการศึกษาผลในการต้านมะเร็งผ่านกลไกอื่น เช่น ต้านการแพร่กระจายของเซลล์มะเร็ง เป็นต้น ที่อาจนำไปสู่การประยุกต์ใช้ร่วมกับการรักษามะเร็ง

วัตถุประสงค์การวิจัย

เพื่อให้ทราบว่าผลิตภัณฑ์น้ำมันรำข้าวที่จำหน่ายในปัจจุบันมีฤทธิ์ต้านการเจริญเติบโตของเซลล์มะเร็งตับ จริงตามที่กล่าวอ้างหรือไม่

วิธีการวิจัย

เครื่องมือที่ใช้ในการวิจัย

เครื่องปั่นเยื่องควบคุมอุณหภูมิ (refrigerated centrifuge)

เครื่องปั่นผสม (vortex)
 เครื่องวัดการดูดกลืนแสง (spectrophotometer)
 เครื่องนึ่งปราศจากเชื้อ (autoclave)
 เครื่องประมวลผล (microcomputer)
 เครื่องระเหยแห้งด้วยความเย็น (freeze-drier)
 อ่างน้ำนิยมควบคุมอุณหภูมิ (water bath)
 ตู้ปราศจากเชื้อ (laminar airflow hood)
 ตู้อบเพาเวลล์ (CO₂ incubator)
 กล้องจุลทรรศน์ชนิดหัวกลับ (inverted microscope)

วัสดุและอุปกรณ์วิทยาศาสตร์

autopipette ขนาดต่าง ๆ
 pipette tip ขนาดต่าง ๆ
 pipette tip rack
 eppendorf tube
 eppendorf tube rack
 test tube rack
 ขวดแก้ว (Duran) ขนาดต่าง ๆ
 สารเคมี
 น้ำกลั่น (double - distilled water)
 dimethyl Sulphoxide (DMSO)
 Dulbecco's Modified Eagle Medium (DMEM)

fetal bovine serum (FBS)

ผลิตภัณฑ์น้ำมันรำข้าวจากบริษัทต่าง ๆ

ก๊าซไนโตรเจน

methanol (HPLC grade) (Merck)

ethanol (Merck)

วิธีดำเนินการวิจัย

1. การเตรียมอาหารเลี้ยงเซลล์ ในโครงการวิจัยนี้ใช้อาหารเลี้ยงเซลล์ Dulbecco's Modified Eagle Medium (DMEM) ที่มี 10 % fetal bovine serum (FBS) ร่วมกับ penicillin 100 หน่วยต่อมิลลิลิตร และ streptomycin 100 มิลลิกรัมต่อมิลลิลิตร โดยกรองให้ปราศจากเชื้อใน laminar airflow hood ผ่าน membrane

ขนาด 0.22 ไมครอน และเก็บในตู้เย็น เมื่อต้องการใช้ก็นำมาอุ่นใน water bath ที่ 37°C. ก่อนเป็นเวลาประมาณ 20-30 นาที

2. การเพาะเลี้ยงเซลล์มะเร็งตับ เซลล์มะเร็งตับมีลักษณะของบางและต้องการอาหารเลี้ยงเซลล์ที่เหมาะสมเพื่อให้เซลล์เติบโตได้เต็มที่และมีสุขภาพดี โดยเลี้ยงเซลล์ในตู้บ่มเพาะเซลล์ (CO₂ incubator) ที่ 37°C. และมีบรรยากาศ 5 % CO₂ จนได้เซลล์มะเร็งตับที่เจริญเต็มที่และมีสุขภาพดี ทำการ subculture สัปดาห์ละ 2-3 ครั้งตลอดโครงการวิจัย

3. การทดสอบการต้านการเจริญเติบโตของเซลล์มะเร็งตับ เลี้ยงเซลล์มะเร็งตับในอาหารเลี้ยงเซลล์ปกติ และอาหารเลี้ยงเซลล์ที่มีผลิตภัณฑ์น้ำมันรำข้าว ที่ความเข้มข้นต่าง ๆ กัน เป็นเวลา 1, 4 และ 7 วัน แล้วใช้สีชนิดพิเศษคือ 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) ความเข้มข้น 1 มิลลิกรัมต่อมิลลิลิตร ย้อมสีเซลล์มะเร็งตับ ซึ่งจะให้ผลลัพธ์น้ำเงินเข้มภายในเซลล์เฉพาะเซลล์ที่ยังมีชีวิตอยู่ ต่อจากนั้นละลายผลลัพธ์น้ำเงินเข้มออกจากเซลล์ นำน้ำสีที่ได้ไปวัดความเข้มข้นของสีที่จะประมาณจำนวนเซลล์ที่ยังมีชีวิตอยู่ด้วยเครื่อง Elisa plate reader นำไปคำนวณเป็น % การยับยั้งการเจริญเติบโต (inhibition percentage) โดยเปรียบเทียบให้หกุนควบคุม (control well) คือหกุนที่ไม่ได้มีสารสกัดจากน้ำมันรำข้าวจะมีค่าการอ่อนรอดของเซลล์เป็น 100 % และ % inhibition มีค่าเป็นศูนย์

4. การย้อมสีเซลล์มะเร็งตับด้วยสี crystal violet เลี้ยงเซลล์มะเร็งตับในอาหารเลี้ยงเซลล์ปกติ และอาหารเลี้ยงเซลล์ที่มีผลิตภัณฑ์น้ำมันรำข้าวที่ความเข้มข้นต่าง ๆ กัน เป็นเวลา 1, 4 และ 7 วัน เซ่นเดียวกับในข้อ 3 หลังจากนั้นย้อมสีเซลล์ด้วย crystal violet ซึ่งจะติดสีออกม่วง ทึ้งค้างคืนให้แห้งสนิท และนำไปส่องกล้องจุลทรรศน์ ถ่ายรูป นับจำนวนเซลล์อย่างน้อย 5 field ต่อ 1 ตัวอย่าง และอาจทดสอบเชิงปริมาณเช่นเดียวกับ MTT ด้วยการละลาย crystal violet ไปอ่านค่าการดูดกลืนแสง หักค่าการดูดกลืนแสงของ blank ออก

นำไปคำนวณเป็น % การมีชีวิตอยู่รอดของเซลล์ (survival percentage) โดยเปรียบเทียบให้หลุมควบคุมคือหลุมที่มิได้มีสารสกัดจากน้ำมันรำข้าวจะมีค่าการอยู่รอดของเซลล์เป็น 100 %

5. คำนวณหาค่าเบอร์เซ็นต์การยับยั้ง (% inhibition)

$$\%inhibition = \frac{A_{control} - A_{sample}}{A_{control}} \times 100$$

เมื่อ $A_{control}$ คือ ค่าการดูดกลืนแสงของหลุมควบคุมคือหลุมที่มิได้มีสารสกัดจากน้ำมันรำข้าว และ

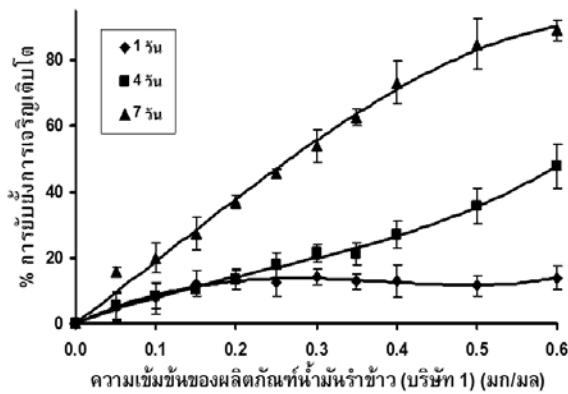
A_{sample} คือ ค่าการดูดกลืนแสงของสารละลายของหลุมที่มีสารสกัดจากน้ำมันรำข้าว

6. การวิเคราะห์ข้อมูล ข้อมูลทุกส่วนจะต้องผ่านกระบวนการตรวจสอบทางสถิติ โดยวิธี analysis of variances, correlation และ regression analysis ด้วยโปรแกรม SPSS

ผลการวิจัย

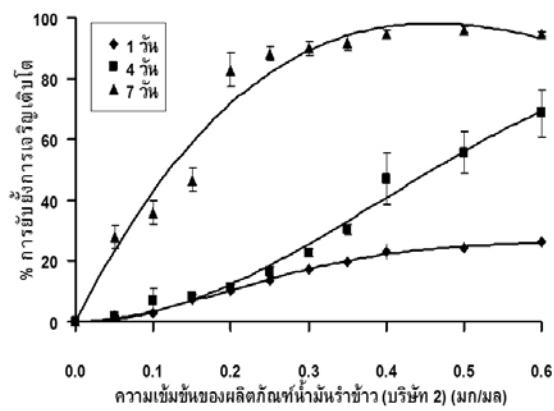
Proliferation assay ในโครงการวิจัยนี้จะเลี้ยงเซลล์มะเร็งตับในอาหารเลี้ยงเซลล์ปกติและอาหารเลี้ยงเซลล์ที่มีผลิตภัณฑ์น้ำมันรำข้าว ความเข้มข้นต่าง ๆ กันแล้วแต่ชนิดของสาร เป็นเวลา 1, 4 และ 7 วัน แล้วใช้ cell proliferation assay ชนิดที่เรียกว่า MTT assay คือ นำสี 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) ซึ่งจะย้อมเฉพาะเซลล์ที่มีชีวิตอยู่ เนื่องจากเซลล์มีชีวิตเท่านั้นที่สามารถจะทำการ uptake สารสีนี้เข้าสู่ภายในเซลล์ได้ เอนไซม์ mitochondrial dehydrogenase จะทำการ reduce สีเหลืองของ MTT ให้กลairy เป็นสีม่วงของ formazan และมีคุณสมบัติดูดกลืนแสงได้ที่ความยาวคลื่น 570 นาโนเมตร นั่นคือ MTT จะย้อมเฉพาะเซลล์ที่ยังมีชีวิตอยู่ให้เกิดเป็นผลึกสีม่วงเข้มที่ม่องเห็นได้อย่างชัดเจนภายในกล้องจุลทรรศน์ชนิดหัวกลับ หลังจากนั้นก็จะนำ acidified isopropanol หรือ di-methylsulfoxide (DMSO) มาละลายผลึกสีน้ำเงินเข้มออกจากเซลล์ แล้วจึงนำสารละลายน้ำสีม่วงที่ได้ไปดัดความเข้มข้นของสีด้วยเครื่อง Elisa

plate reader ที่ความยาวคลื่นดังกล่าวมาแล้ว ความเข้มข้นของสีจะเปรียบตามจำนวนเซลล์ที่ยังมีชีวิตอยู่ การประเมินประสิทธิภาพต่อการเจริญเติบโตของเซลล์จะใช้ความเข้มข้นที่สามารถยับยั้งการเจริญของเซลล์ได้ 50 % หรือ inhibition concentration ที่ 50 % (IC_{50})


ผลการวิจัยในภาพรวม ผลการวิจัยแสดงให้เห็นว่า การเจริญเติบโตของเซลล์มะเร็งตับลดลงอย่างมีนัยสำคัญทางสถิติในลักษณะที่เปรียบตามขนาดของผลิตภัณฑ์น้ำมันรำข้าว ที่เพิ่มขึ้นหรือที่เรียกว่า dose-dependent manner คือเปรียบตามความเข้มข้น และ time-dependent manner คือเปรียบตามระยะเวลาที่เซลล์ได้สัมผัสกับสารนานขึ้น

Dose-response curve โดยปกติแล้ว dose-response curve ทั่ว ๆ ไปจะใช้ความเข้มข้นช่วงกว้างเป็น 10 เท่า จึงใช้ log concentration เพื่อให้สะดวกต่อการพิจารณาภาพรวมที่จะมีลักษณะเป็น sigmoid curve ที่มองเห็นช่วง steep portion ได้อย่างชัดเจนและหากค่า effective concentration ที่ 50 % ได้ง่าย แต่สำหรับโครงการวิจัยนี้ ค่าความเข้มข้นต่าง ๆ ของผลิตภัณฑ์น้ำมันรำข้าว ในแกน X ของกราฟภาพ 6, 8, 10 และ 12 ใช้มาตราส่วนธรรมา เนื่องจากช่วงความเข้มข้นที่ใช้แคนมาก สาเหตุที่การวิจัยนี้ใช้ช่วงความเข้มข้นแคนก์เพราะถูกกำหนด (limit) ด้วยความสามารถในการด้านการเจริญเติบโตของเซลล์มะเร็งและความจำกัดของค่าการละลาย (solubility) โดยทุกความเข้มข้นของสารจะมีการละลายดี ไม่มากหรือน้อยจนเกินไป รวมทั้งมีค่าความเป็นกรดด่าง (pH) ที่เหมาะสมด้วย

ผลิตภัณฑ์น้ำมันรำข้าว โครงการวิจัยนี้ใช้ผลิตภัณฑ์น้ำมันรำข้าวจาก 2 บริษัท ที่มีค่าการละลายไม่แตกต่างกันเท่าใดนัก ผลการศึกษาแสดงไว้ในภาพ 1 - 2 คือความเข้มข้นในการยับยั้งการเจริญเติบโตของเซลล์มะเร็งตับมีค่าใกล้เคียงกันคือหลังจากให้ทดลองให้เซลล์มะเร็งตับสัมผัสกับผลิตภัณฑ์น้ำมันรำข้าวเป็นเวลา 7 วัน ในช่วงความเข้มข้น 0 - 0.6 มิลลิกรัมต่อมิลลิลิตร จะพบค่าความเข้มข้น IC_{50} ที่ 0.274 + 0.004 และ 0.127 + 0.006 มิลลิกรัมต่อมิลลิลิตร หรือ 274 + 4 และ 127 + 6


ไมโครกรัมต่อมิลลิลิตร ซึ่งอยู่ในช่วงที่พожะยอมรับได้ หากทดลองให้เชลล์มะเริงตับสัมผัสถักบันผลิตภัณฑ์น้ำมัน รำข้าวเป็นเวลา 1 หรือ 4 วัน จะยับยั้งการเจริญเติบโตได้ไม่ถึง 50 % หรือเกิน 50 % ไปเพียงเล็กน้อย จึงไม่ควรนำข้อมูลไปใช้หาค่า IC_{50} เพราะมีแนวโน้มที่จะได้ค่า IC_{50} ที่มี accuracy และ precision ต่ำ

ฤทธิ์ต้านการเจริญเติบโตเชลล์มะเริงตับของผลิตภัณฑ์น้ำมันรำข้าว (บริษัท 1)

ภาพ 1 กราฟเปรียบเทียบความสามารถในการต้านการเจริญเติบโตของผลิตภัณฑ์น้ำมันรำข้าว (บริษัท 1) ความเข้มข้น 0 - 600 ไมโครกรัมต่อมิลลิลิตร ต่อเชลล์มะเริงตับ ($n = 3$) ที่เวลา 1, 4 และ 7 วัน โดยมีค่าความเข้มข้น IC_{50} 274 + 4 ไมโครกรัมต่อมิลลิลิตร ที่เวลา 7 วัน

ฤทธิ์ต้านการเจริญเติบโตเชลล์มะเริงตับของผลิตภัณฑ์น้ำมันรำข้าว (บริษัท 2)

ภาพ 2 กราฟเปรียบเทียบความสามารถในการต้านการเจริญเติบโตของผลิตภัณฑ์น้ำมันรำข้าว (บริษัท 2) ความเข้มข้น 0 - 600 ไมโครกรัมต่อมิลลิลิตร ต่อเชลล์

มะเริงตับ ($n = 3$) ที่เวลา 1, 4 และ 7 วัน โดยมีค่าความเข้มข้น IC_{50} 127 + 6 ไมโครกรัมต่อมิลลิลิตร ที่เวลา 7 วัน

วิจารณ์และสรุปผล

เมื่อพิจารณาความสามารถในการต้านการเจริญเติบโตของเชลล์มะเริงตับจะเห็นได้ว่า ผลิตภัณฑ์น้ำมันรำข้าว มีประเด็นสำคัญที่ควรพิจารณาสำคัญ 3 ประการ คือ

1. ผลิตภัณฑ์น้ำมันรำข้าว อาจไม่มีฤทธิ์โดยตรง (direct effect) ในการเป็นพิษ (cytotoxic effect) ต่อเชลล์มะเริงตับ โดยเฉพาะสาร gamma-oryzanol ที่ไม่สามารถหาค่า IC_{50} ได้แม้ว่าจะให้เชลล์มะเริงตับสัมผัสถักบันสาร gamma-oryzanol เป็นเวลานานถึง 7 วัน ก็ตาม ผลิตภัณฑ์น้ำมันรำข้าวที่ให้เชลล์มะเริงตับสัมผัสถักบันสารเป็นเวลา 1 และ 4 วัน สันนิษฐานว่าอาจเนื่องมาจากการสูญเสียของสารที่ต้องการต่อต้านการเจริญเติบโต เช่น

- สารบางชนิดมีกลไกหรือรูปแบบการทำงานที่แตกต่างกันออกไป เช่น สารบางชนิดต้องถูก enzyme ในตับเปลี่ยนไปเป็นสาร active metabolite เสียก่อน จึงจะทำงานได้ สารบางชนิดต้องทำงานร่วมกับระบบภูมิคุ้มกันหรือต้องถูกเร้าด้วยระบบภูมิคุ้มกันก่อน จึงจะออกฤทธิ์ได้

- สารบางชนิดมีกลไกการต้านมะเริงที่แตกต่างกันออกไป เช่น สารบางชนิดไม่สามารถทำลายเชลล์มะเริงได้โดยตรงหรืออาจต้องใช้ขนาด (dose) สูง แต่มีฤทธิ์ต้านการแพร่กระจายของเชลล์มะเริง หรืออีกตัวอย่างหนึ่งที่นับเป็นข่าวดีสำหรับผู้ป่วยมะเริงก็คือ วงการแพทย์อาจสามารถรักษามะเริงได้ในระยะ 10 ปี หรือไม่เกิน 15 ปี ข้างหน้านี้ ด้วยยาที่มีฤทธิ์ต้านการสร้างหลอดเลือดใหม่ (angiogenesis agent) ที่จะไม่ผลทำลายเชลล์มะเริง จึงไม่มีฤทธิ์ข้างเคียงต่อระบบภูมิคุ้มกัน ไขกระดูก ผมร่วง ดังที่พบในการทำเคมีบำบัด (chemotherapy) ทั่ว ๆ ไป แต่จะมีกลไกยับยั้งมิให้หลอดเลือดใหม่ออกไปยังก้อนเนื้อมะเริง กลุ่มเชลล์มะเริงจึงไม่สามารถขยายขนาดให้ใหญ่ขึ้นได้ เพราะขาดสารอาหารและมีการสะสมของเสียไว้ภายในเซลล์ เป็นจำนวนมาก ปัจจุบันยากลุ่มนี้ได้ผ่านเข้าสู่การวิจัย

ระดับคลินิก (clinical trial) ระยะ (phase) 2-3 แล้ว
2. ผลิตภัณฑ์นำมันรำข้าวมีความแรงในการ
ทำลายหรือยับยั้งการเจริญเดิบโดยของเซลล์มะเร็งตับ
อย่างไรก็ตาม ก็พอจะกล่าวในเบื้องต้นได้ว่า
ผลิตภัณฑ์นำมันรำข้าวน่าจะมีกลไกอย่างในการ

ต้านมะเร็งได้บ้าง โดยอาจต้องทดสอบกับเซลล์มะเร็ง
ชนิดอื่น หรือทดสอบการต้านมะเร็งกลไกอื่น เช่น การต้าน
ปฏิกิริยาออกซิเดชันในเซลล์มะเร็งบางชนิด การต้าน
การสร้างหลอดเลือดใหม่ เป็นต้น

เอกสารอ้างอิง

Ames, B. N., Shigenaga, M. K. & Hagen, T. M. (1993). Oxidants, antioxidant and degenerative diseases of aging. *Proceeding of Natural Academy of Sciences*. 90, 7915-7922.

Benedetto, A. V. (1998). The Environment and skin Aging. *Clinics in permatology*. 16, 129-139.

Bidlack, W. (1999). *Phytochemicals as bioactive agents*. Lancaster, Basel, Switzerland: Technomic Publishing.

Bokov, A., Chaudhuri, A. & Richardson, A. (2004). *The role of oxidative damage and stress in aging. mechanisms of aging development*. 125, 811-826.

Farr, D. R. (1997). Functional foods. *Cancer Letters*, 114, 59-63.

Greatvista chemicals. (2008). *Gamma oryzanol*. Retrieved from http://www.greatvistachemicals.com/pharmaceutical_intermediates/gamma-oryzanol.html.

Ha, T. Y., Han, S., Kim, S. R., Kim, I. H., Lee, H. Y. & Kim, H. K. (2005). Bioactive components in rice bran oil improve lipid profiles in rats fed a high-cholesterol diet. *Nutrition Research*. 25, 597–606.

Ito, N., Hirose, M., Fukushima, S., Tsuda, R., Shirai, T. & Tatematsu, M. (1986). Studies on antioxidants: their carcinogenic and modifying effects on chemical carcinogenesis. *Food and chemical Toxicology*. 24, 1071-1082.

Jenkins, G. (2002). Molecular mechanisms of skin ageing. *Mechanisms of aging and Development*, 123, 801-810.

Juliano, C., Cossu, M. I., Alamanni, M. C. & Piu, L. (2005). Antioxidant activity of gamma0oryzanol: Mechanism of action and its effect on oxidation stability of pharmaceutical oils. *International Journal of Pharmaceutics*, 299, 146-154.

Lakkakula, N. R., Lima, M. & Walker, T. (2004). Rice bran stabilization an rice bran oil extraction using ohmic heating. *Bioresource Technology*, 92, 157-161.

Kanungo, M. S. (1994). *Genes and aging*. New York: Cambridge University Press.

Miura, D., Ito, Y., Aya, M., Kise, M., Ato, H. & Yagaski, K. (2006). Hypocholesterolemic action of pregerminated brown rice in hepatoma-bearing rats. *Life Science*, 79, 259-264.

Moldenhauer, K. A., Champagne, E. T., McCaskill, D. R. & Guraya, H. (2003). *Functional products from rice*. In G. Mazza (ed.), *Functional foods*. Lancaster, Basel, Switzerland: Technomic Publishing.

Mosca, L., Marcellini, S., Perluigi, M., Mastroiacovo, P., Moretti, S., Famularo, G., et al. (2002). Modulation of apoptosis and improved redox metabolism with the use of a new antioxidant formula. *Biochem Pharmacol*, 63, 1305-14.

Pugliese, P. T. (1996). *Free radicals and the skin*. In: Pugliese PT, editors. *Physiology of the skin*. Illinois: Allured Publishing Corporation.

Ricciarelli, R., Maroni, P., Ozer, N., Zingg, J. M., Azzi, A. (1999). Age-dependent increase of collagenase expression can be reduced by alpha-tocopherol via protein kinase c inhibition. *Free Radic Biol Med*, 27, 29-37.

Roberfroid, M., & Calderon, P. B. (1995). *Free radicals and oxidation phenomena in biological systems*. New York: Marcel Dekker.

Rogers, E. J., Rice, S. M., Nicolosi, R. J., Carpenter, D. R., McClelland, C. A., & Romanczyk, L. J. (1993). Identification gramma-oryzanol and quantitation of components and simultaneous assessment of tocols in rice bran oil. *Journal of American Oil Chemists Society*, 70(3), 301-307.

Sanchez-Moreno, C., Larrauri, J. A. & Saura-Calixto, E. (1999). Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. *Food Research International*, 32(2), 407-412.

Servinova, E., Kagan, V., Han, D. & Packer, L. (1991). Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. *Free Radical Biology and Medicine*, 10, 263-275.

Shahids, F. & Wanasundara, P. K. J. (1992). Phenolic antioxidants. *Critical Reviews in Food Science*, 32, 67-103.

Shin, T., Godber, J. S., Martin, D. E. & Wells, J. H. (1997). Hydrolitic stability and changes in E vitamers and cryzanol of extruded rice bran during storage. *Journal of Food Science*, 62, 704-708.

Son, Y. O., Kim, J., Lim, L. C., Chung, G. H. & Lee, J. C. (2003). Ripe fruits of Solanum nigrum L. inhibits cell growth and induces apoptosis in MCF-7 cells. *Food and Chemical Toxicology*, 41, 1421-1428.

Stoyanovsky, D. A., Melnikov Z, Cederbaum AI. (1999). ESR and HPLC-EC analysis of the interaction of hydroxyl radical with DMSO: rapid reduction and quantification of POBN and PBN nitroxides. *Anal Chem*, 71, 715-721.

Ueda, J. I., Saito N, Shimazu Y, & Ozawa T. (1996). A comparison of scavenging abilities of antioxidants against hydroxyl radicals. *Arch Biochem Biophys*, 253(2), 377-384.

Vajragupta, O., Boonchoong, P., & Wongkrajang, Y. (2000). Comparative quantitative structure-activity study of radical scavengers. *Biorg Med Chem*, 8, 2617-2628.

Vertuani, S., Bosco, E., Testoni, M., Ascanelli, S., Azzena, G. & Manfredini, S. (2004). Antioxidant herbal supplements for hemorrhoids developing a new formula. *NUTRA foods*, 3, 19-26.

Wang, H., Cao, G. & Prior, R. L. (1997). Oxygen radical absorbing capacity of anthocyanins. *Journal of Agricultural and food Chemistry*, 45, 307-309.

Wickens, P. A. (2001). Ageing and the free radical theory. *Respiration Physiology*, 128, 379-391.

Williams, G. M., Iatropoulos, M. J. & Whysner, J. (1999). Safety assessment of butylated hydroxyanisole and butylated hydroxytoluene as antioxidant food additives. *Food and Chemical Toxicology*, 37, 1027-1038.

Whysner, L., Wang, C. X., Zang, E., Iatropoulos, M. J. & Williams, G. M. (1994). Dose response of promotion by butylated hydroxyanisole in chemically initiated tumours of the rat forestmoach. *Food and Chemical Toxicology*, 32, 215-222.

Xu, Z., & Godber, J. S. (1999). Purification and identification of components of gamma-oryzanol in rice bran oil. *Journal of Agricultural and Food Chemistry*, 47, 2724-2728.