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บทคัดย่อ

การวิจัยครั้งน้ี มีวัตถุประสงค์เพื่อ (1) เพื่อวิเคราะห์สาเหตุการเกิดอากาศยานอุบัติเหตุ และ (2) เพื่อวัดประสิทธิภาพ

การพยากรณ์อากาศยานอุบัติเหตุ ใช้การสุ่มตัวอย่างแบบไม่อาศัยความน่าจะเป็น ด้วยวิธีเฉพาะเจาะจงจากอากาศยาน

พาณิชย์แอร์บัส รุ่น A320-A321 ที่มีรายงานเกิดอุบัติเหตุช่วงการลงจอดและมีรายงานการสอบสวนอุบัติเหตุเสร็จสมบูรณ์ 

ด้วยปัจจัย เช่น เวลา สภาพอากาศ จ�ำนวนทางวิ่ง HFACS เป็นต้น ตั้งแต่ปี ค.ศ.2013-2023 ท่ี จ�ำนวน 67 ชุด แบ่งเป็น 2 ชุด 
คือ ชุดฝึกสอน จ�ำนวน 54 ชุด และชุดทดสอบ จ�ำนวน 13 ชุด เครื่องมือในการวิเคราะห์ข้อมูล คือ ค่าความถ่ี ร้อยละ 
และเนอีฟเบย์ ผลการวิจัยพบว่า (1) สาเหตุการเกิดอากาศยานอุบัติเหตุ คือ ข้อจ�ำกัดทางกายภาพ และข้อผิดพลาดของ

มนุษย์ เป็นต้น และ (2) ประสิทธิภาพการพยากรณ์อากาศยานอุบัติเหตุ ได้เท่ากับ 0.69  

ค�ำส�ำคัญ: พยากรณ์ อากาศยาน อุบัติเหตุ ปัจจัยมนุษย์ เนอีฟเบย์

การพยากรณ์อากาศยานอุบัติเหตุจากการวิเคราะห์และ
จ�ำแนกปัจจัยมนุษย์ด้วยเนอีฟเบย์

The Forecasting Aircraft Accident from Human Factors Analysis and 
Classification Systems by Naive Bayes
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Abstract 

This research aim (1) to analyzes cause of aircraft accident and (2) to measure the efficiency of 

aircraft accident forecasting. Using non-probability sampling with purposive sampling method from 

Airbus commercial aircraft type A320-A321 which had an accident during landing and has completed 

investigate due to the factors such as time, weather condition, number of runways, and HFACS from 

year 2013-2023, total 67 datasets. All set were divided to train data to 54 datasets and testing data 

to 13 datasets. Data were analyzed by frequency, percentage, Naïve Bayes. Result found, (1) cause 

of aircraft accident are physical limitation and human error etc. (2) The efficiency of aircraft accident 

forecasting equal to 0.69. 

Keywords: forecasting, aircraft, accident, human factors, naive bayes

บทน�ำ 
	 นอกจากการขนส่งทางอากาศเป็นหนึง่ในวธีิการขนส่ง
ที่ปลอดภัยที่สุดแล้ว ยังจ�ำเป็นอย่างยิ่งต่อการพัฒนาสังคม 
เศรษฐกจิ และธรุกจิต่าง ๆ  ทัว่โลก (De Castroverde, 2024) 
รวมถึงอบุตัเิหตุในการขนส่งทางอากาศในเชงิพาณชิย์มอีตัรา
น้อยมากเมื่อเทียบกับการขนส่งแบบอื่น (Rookeaw et al.,
2022) อย่างไรก็ตามแม้ว่าโอกาสเกิดอุบัติเหตุในการขนส่ง
ทางอากาศยานจะมีน้อยมาก แต่หากเกิดข้ึนมาแล้วย่อม
อาจจะท�ำให้เกิดการบาดเจ็บ เสียชีวิต เสียทรัพย์สิน และ
บริษัทที่เกี่ยวข้องหรือสายการบินอาจจะต้องสูญเสียช่ือ
เสียงตลอดจนความภักดีของผู้โดยสารที่มาใช้บริการส่งผล
ให้เกิดความขาดทุนหรือล้มละลายได้ (Kitcharoen, 2021) 

	 ทัง้น้ี คณะผูว้จิยัสามารถสงัเคราะห์ข้อเทจ็จรงิจาก
ข้อมูลงานวิจัยด้านการพยากรณ์อุบัติเหตุในอุตสาหกรรม
การบินและส่วนท่ีเกี่ยวข้อง จากบทความและวรรณกรรม
ดังนี้ เช่น Yeoum and Lee (2013); Ison (2015); 
Mathur et al. (2017); Kaji et al. (2019); Mehta et al. 
(2021); Caetano (2022); Silagyi and Liu (2023) พบว่า 
การพยากรณ์อากาศยานอุบัติเหตุนน้ันนิยมใช้การเรียนรู้
ของเครื่องจักร (machine learning) เป็นเครื่องมือใน
การพยากรณ์ เช่น การถดถอยโลจสิตกิส์ (logistics regression) 
ซัพพอร์ตเวกเตอร์แมชชีน (support vector machine) 
ป่าสุ่ม (random forest) เพื่อนบ้านใกล้ที่สุด (K nearest 
neighbors) เนอีฟเบย์ (Naive Bayes) และโครงข่าย
ประสาทเทียม (artificial neural network) ส�ำหรับ
ตัวแปรต้นนั้น พบว่า เป็นรุ่นของอากาศยาน วัตถุประสงค์

ของภารกจิ สภาพอากาศยาน ดงังานวจิยัของ Mehta et al.
(2021) เวลาในการเกิดอุบัติเหตุ ทางวิ่งที่ใช้ จ�ำนวนลูกเรือ 
อายุของนักบิน ดังงานวิจัยของ Silagyi and Liu (2023) 
และเห็นด้านปัจจัยมนุษย์ ดังงานวิจัยของ Lazaro et al. 
(2024)   
	 จากบทน�ำข้างต้นคณะผูว้จิยัสนใจจะท�ำงานวจัิยใน
หัวข้อการพยากรณ์อากาศยานอุบัติเหตุจากการวิเคราะห์
และจ�ำแนกปัจจัยมนุษย์ (HFACS) ด้วยเนอีฟเบย์ เนื่องจาก 
HFACS ถกูน�ำไปใช้วเิคราะห์ปัจจยัในสาเหตุการเกดิอบุตัเิหตุ
ในหลายด้านและเป็นการวิเคราะห์หาสาเหตุที่ละเอียด 
และเนอีฟเบย์เนื่องจากง่ายและรวดเร็วในการท�ำนาย
ของชุดข้อมูลทดสอบและท�ำงานได้ดีกว่าเมื่อเปรียบเทียบ
กับโมเดลการเรียนรู้ของเครื่องอื่น ๆ โดยมีวัตถุประสงค์
เพื่อวิเคราะห์สาเหตุการเกิดอากาศยานอุบัติเหตุและวัด
ประสิทธิภาพการพยากรณ์

วัตถุประสงค์การวิจัย 
	 1. เพือ่วเิคราะห์สาเหตกุารเกดิอากาศยานอบุตัเิหตุ
	 2. เพื่อวัดประสิทธิภาพการพยากรณ์อากาศยาน
อุบัติเหตุ

แนวคิดทฤษฎีที่เกี่ยวข้อง 
	 การวิเคราะห์และจ�ำแนกปัจจัยมนุษย์
	 การวเิคราะห์และจ�ำแนกปัจจยัมนษุย์ หรอื Human 
Factors Analysis and Classification System--HFACS ได้
ถูกพฒันาโดย Dr.Scott Shappell และ Dr.Doug Wiegmann 
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ซ่ึงการวเิคราะห์น้ีเดมิทกีองทพัเรอืของสหรฐัอเมรกิา ใช้เพือ่
ตรวจสอบและวิเคราะห์ปัจจัยมนุษย์ในแง่มุมต่าง ๆ ของ
การบิน ส�ำหรับการวิเคราะห์นี้มีพื้นฐานมาจากแบบจ�ำลอง
สวสิชสี (Swiss Cheese) ของ ศาสตราจารย์ James Reason 
ภายในแต่ละระดับของ HFACS ตามภาพ 1 โดยมีการแบ่ง
เป็น 4 ชั้น จากล่างขึ้นบน ดังนี้ (Skybrary, 2024)

	 1. การกระท�ำทีไ่ม่ปลอดภยั (unsafe act) ในทีน่ี ้คือ 
ผู้ปฏิบัติงาน แบ่งออกเป็นสองประเภท คือ ข้อผิดพลาด 
(error) มหีมวดหมูย่่อยอกี 3 ตวั และการละเมดิ (violation) 
มีหมวดหมู่ย่อยอีก 2 ตัว

	 2. เงือ่นไขเบ้ืองต้นส�ำหรับการกระท�ำทีไ่ม่ปลอดภยั 
(preconditions for unsafe acts) แบ่งออกเป็นสาม
ประเภท คือ ปัจจัยด้านสิ่งแวดล้อมรอบตัวผู้ปฏิบัติงาน 
(environmental factors) มีหมวดหมู่ย่อย 2 ตัว ปัจจัย
ด้านสภาพของผู้ปฏิบัติงาน (condition of operators) 

มีหมวดหมู่ย่อย 3 ตัว และปัจจัยด้านบุคคล (personal 
factors) มี

	 3. หมวดหมู่ย่อย 2 ตัว

	 4. การก�ำกบัดแูลท่ีไม่ปลอดภยั (unsafe supervision) 
แบ่งออกเป็นสี่ประเภท คือ การก�ำกับดูแลที่ไม่เพียงพอ 
(inadequate supervision) วางแผนการด�ำเนินงานที่ไม่
เหมาะสม (plan inappropriate operation) ไม่สามารถ
แก้ไขปัญหาได้ (fail to correct known problem) และ 
การละเมิดการก�ำกับดูแล (supervisory violation)

	 5. อทิธพิลขององค์กร (organizational influences) 
แบ่งออกเป็นสามประเภท คอื การจัดการทรพัยากร (resource 
management) บรรยากาศขององค์กร (organizational 
climate) และ กระบวนการด�ำเนินงาน (operational 
process)

ภาพ 1 Human Factors Analysis and Classification System 
Note. From Human factors analysis and classification system by Skybrary, 2024, retrieved from
https://skybrary.aero/articles/human-factors-analysis-and-classification-system-hfacs



วารสารวิชาการมหาวิทยาลัยอีสเทิร์นเอเชีย
ฉบับวิทยาศาสตร์และเทคโนโลยีปีที่ 18 ฉบับที่ 3 ประจ�ำเดือน กันยายน-ธันวาคม 2567 117

	 ขัน้ตอนในการใช้ HFACS เพือ่ประเมนิปัจจยัสาเหตุ

ของการเกดิอุบัติเหตุสามารถท�ำได้ ดังนี้ (Kinanti, 2024)

	 1. อ่าน วิเคราะห์ และระบุรายงานอุบัติเหตุ

	 2. ระบุสาเหตุของการเกิดอุบัติเหตุ ด้วยรายการ

ตรวจสอบ (checklist)

	 3. ท�ำการจ�ำแนกปัจจัยที่ก่อให้เกิดอุบัติเหตุ 

	 ทัง้นี ้HFACS ได้ถูกน�ำไปใช้วเิคราะห์ปัจจัยในสาเหตุ
การเกิดอุบัติเหตุในหลายด้าน เช่น อุตสาหกรรมเหมืองแร่ 

อตุสาหกรรมการก่อสร้าง การให้บรกิารสาธารณะ เช่น ด้าน
การขนส่งทางบก ด้านการขนส่งทางราง ด้านการขนส่งทาง

อากาศ ด้านการขนส่งทางน�้ำ และด้านการบริการสุขภาพ 

เป็นต้น (Jalali et al., 2023) ซึง่คณะผูว้จิยัเลอืกใช้เนือ่งจาก

เป็นการวิเคราะห์ปัจจัยในสาเหตุการเกิดอุบัติเหตุในหลาย

ด้านและเป็นการวิเคราะห์หาสาเหตุที่ละเอียดซึ่งจะท�ำให้

การป้องกันเป็นไปง่ายยิ่งขึ้น

	 เนอีฟเบย์

	 เนอีฟเบย์ (Naive Bayes) เป็นการเรียนรู้แบบมี

ผู้สอน (supervised machine learning) ทีไ่ด้รับความนยิม
ซึ่งใช้ส�ำหรับงานจ�ำแนกประเภท และเป็นส่วนหนึ่งของ
อัลกอริธึมปัญญาประดิษฐ์รูปแบบหนึ่งที่ใช้ส�ำหรับสร้าง

เน้ือหาใหม่ ๆ (Generative AI) ได้อย่างหลากหลายแบบ

อัตโนมัติโดยที่ไม่ต้องมีมนุษย์เข้ามาช่วย ทฤษฎีบทของเบย์ 

(Bayes’ theorem) อธิบายความน่าจะเป็นของเหตุการณ์ 

โดยอาศัยความรู้ก่อนหน้าเก่ียวกับเงื่อนไขท่ีอาจเก่ียวข้อง

กับเหตุการณ์นั้น ตาม (1) (Ray, 2024)

                                  
(1)

โดยที่ 
	 P(c|x) คอื ความน่าจะเป็นทีข้่อมลูท่ีมแีอตทรบิิวต์

เป็น x จะมีคลาส c

	 P(x|c) คือ ความน่าจะเป็นซึ่งเป็นความน่าจะเป็น

ของตัวท�ำนายที่ก�ำหนดคลาส

	 P(c) คือ ความน่าจะเป็นก่อนหน้าของคลาส

	 P(x) คือ ความน่าจะเป็นก่อนหน้าของ

ตัวท�ำนาย

	

	 เนอีฟเบย์สามารถน�ำไปประยกุต์ใช้ในการพยากรณ์

อุบัติเหตุทางอากาศ เช่น งานวิจัยของ Caetano (2022); 

Kajic et al. (2019); Zhang and Mahadevan (2021); 

Zhao et al. (2022) ด้านการพยากรณ์ผลการแข่งขันกีฬา 

เช่น งานวิจัยของ Jongmuanwai and Poommarin 

(2022) ด้านการแพทย์ เช่น งานวิจัยของ Jirapanthong 

and Banluesapy (2022) เป็นต้น

	 ข้อดีและข้อจ�ำกัดของเนอีฟเบย์ ข้อดี คือ ง่ายและ

รวดเร็วในการท�ำนายของชุดข้อมูลทดสอบ ท�ำงานได้ดีกว่า

เมื่อเปรียบเทียบกับโมเดลการเรียนรู้ของเครื่องอ่ืน ๆ เช่น 

การถดถอยโลจิสติกหรือแผนผังการตัดสินใจ และต้องการ

ข้อมูลการฝึกน้อยกว่า และเหมาะสมกับตัวแบบหมวดหมู่

มากกว่าตัวแปรตัวเลข ส่วนข้อจ�ำกัด คือ หากความน่าจะ

เป็นเป็นศูนย์หรือมีทศนิยมที่มีจ�ำนวนน้อยมาก ๆ  จะส่งผล

ให้กับตัวแปรในหมวดหมู่ (Vadapalli, 2023)

	 การวัดประสิทธิภาพของการพยากรณ์

	 เมทรกิซ์แห่งความสบัสน (confusion matrix) คอื 
ตารางของผลลัพธ์การพยากรณ์และผลลัพธ์ของปัญหา

การจ�ำแนกประเภท ตามภาพ 2 (Satangmongkol, 2023)

	 จากภาพ 2 “Actual” คอื ค่าจรงิ “Forecasting” 

คือ ค่าพยากรณ์ “TP” คือ ค่าท่ีเราพยากรณ์ว่าเป็น Yes 

และค่าจริงก็เป็น Yes “FN” คือ ค่าท่ีเราพยากรณ์ว่าเป็น 

No แต่ค่าจริงเป็น Yes “FP” คือ ค่าที่เราพยากรณ์ว่า

เป็น Yes แต่ค่าจริงเป็น No  “TN” คือ ค่าท่ีเราพยากรณ์

ว่าเป็น No และค่าจริงก็เป็น No โดยท่ีค่า “TP” “FN” 

“FP” และ “TN” จะเป็นค่าความถ่ีจากการเปรียบเทียบ
จากค่าจริงและค่าพยากรณ์ ท้ังนี้ค่าจากเมทริกซ์แห่ง

ความสับสนสามารถน�ำไปสร้างการวัดประสิทธิภาพต่าง ๆ 

(Simplilearn, 2024) ได้ดังนี้ 
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	 1. Accuracy คือ การวดัประสทิธิภาพความถูกต้อง

โดยรวมของโมเดล โดยค่าจะอยู่ระหว่าง 0 ถึง 1 และยิ่ง

เข้าใกล้ 1 แสดงว่าการวัดประสิทธิภาพนั้นยิ่งดี (2)

 

                        
(2)

	 2. Precision คอื การวดัประสทิธภิาพความสามารถ
ของแบบจ�ำลองในการจ�ำแนกค่าบวกอย่างถูกต้อง โดยค่า

จะอยู่ระหว่าง 0 ถึง 1 และยิ่งเข้าใกล้ 1 แสดงว่าการวัด

ประสิทธิภาพนั้นยิ่งดี (3)

                                
(3)

	 3. Recall คือ การวัดประสิทธิภาพความสามารถ
ของแบบจ�ำลองในการพยากรณ์ค่าบวก โดยค่าจะอยูร่ะหว่าง 

0 ถึง 1 และยิ่งเข้าใกล้ 1 แสดงว่าการวัดประสิทธิภาพนั้น

ยิ่งดี (4)

                               
(4)

ภาพ 2 Confusion matrix

กรอบแนวคิดการวิจัย

ภาพ 3 กรอบแนวคิดการวิจัย
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วิธีด�ำเนินการวิจัย 

	 คณะผู้วิจัยเก็บข้อมูลทุติยภูมิ (secondary data) 

อากาศยานอบัุตเิหตจุากฐานข้อมลูต่างประเทศมาวเิคราะห์

สาเหตุการเกิดอากาศยานอุบัติเหตุด้วยการวิเคราะห์และ

จ�ำแนกปัจจยัมนษุย์ (วตัถปุระสงค์ข้อที ่1) ในการเกบ็ข้อมลู

คณะผู ้วิจัยได้ใช้การสุ ่มตัวอย่างแบบเฉพาะเจาะจงมา
จ�ำนวน 67 ชุด จากนั้นน�ำมาแบ่งเป็น 2 ชุด คือ ชุดฝึกสอน 
(train data) จ�ำนวน 54 ชดุ คดิเป็นร้อยละ 80 และชุดทดสอบ 
(test data) จ�ำนวน 13 ชุด คิดเป็นร้อยละ 20 (Maayan, 
2023) จากนั้นน�ำชุดฝ ึกสอนมาสร ้างการพยากรณ์

อากาศยานอุบัติเหตุเพื่อวัดประสิทธิภาพการพยากรณ์

โดยเทียบกับชุดทดสอบ (วัตถุประสงค์ข้อที่ 2) 

ประชากรและกลุ่มตัวอย่าง 

	 งานวิจัยเรื่องนี้ใช้การสุ ่มตัวอย่างแบบไม่อาศัย

ความน่าจะเป็น (nonprobability sample) ด้วยวิธี
เฉพาะเจาะจง (purposive sampling) เนือ่งจากสามารถให้
คณะผู้วิจัยสามารถมุ่งเน้นเฉพาะประเด็นที่และรวบรวม

ข้อมลูเชงิลึกในหวัข้อทีส่นใจได้ (Bisht, 2024) ตวัอย่างงานวิจัย

ด้านการพยากรณ์ที่มีการใช้การสุ่มตัวอย่างแบบไม่อาศัย

ความน่าจะเป็น ด้วยวิธีเฉพาะเจาะจง เช่น งานวิจัยของ 

Schmidinger et al. (2024); Sonny et al. (2023) เป็นต้น

	 โดยงานวิจัยเร่ืองเก็บกลุ ่มตัวอย่างจากข้อมูล

อากาศยานพาณิชย์ที่มีรายงานเกิดอุบัติเหตุช่วงการลงจอด 

(landing) เนื่องจากมีสถิติอุบัติเหตุมากสุด (International 

Civil Aviation Organization, 2023) จากอากาศยาน

พาณิชย์แอร์บัส (Airbus) รุ่น A320-A321 เน่ืองจากเป็น

ที่รุ่นที่มีสถิติส่งมอบให้สายการบิน (Statista, 2024) และ

เป็นที่นิยมมากที่สุดในโลก (Amati, 2024) ย้อนหลัง 10 ปี 

(ค.ศ.2013-2023) ที่มีรายงานการสอบสวนอุบัติเหตุเสร็จ

สมบูรณ์

	 ท�ำให้ได้จ�ำนวนกลุม่ตวัอย่างทัง้หมด 67 ชดุ จากนัน้
น�ำมาแบ่งเป็น 2 ชดุ คอื ชดุฝึกสอน จ�ำนวน 54 ชดุ คิดเป็น
ร้อยละ 80 และชดุทดสอบ จ�ำนวน 13 ชดุ คิดเป็นร้อยละ 20

เครื่องมือที่ใช้ในการวิจัย 

	 เครื่องมือที่ใช้การวิจัยในวัตถุประสงค์ข้อท่ี 1 

คณะผู้วิจัยได้ออกแบบตารางเก็บข้อมูลในโปรแกรมตาราง

ส�ำหรับการค�ำนวณ (spreadsheet) และวัตถุประสงค์ข้อ

ที่ 2 ใช้โปรแกรมที่เขียนด้วยภาษาคอมพิวเตอร์ในการเขียน

สมการท่ีเก่ียวข้อง

	

การเก็บรวบรวมข้อมูล

	 หลังจากที่ออกแบบตารางเสร็จเรียบร้อยแล้ว 
คณะผู ้วิจัยเก็บข ้อมูลทุติยภูมิจากเว็บไซต ์วิ เคราะห ์

อากาศยานอุบัติเหตุทางอากาศจากประเทศสหรัฐอเมริกา 

โดยจะเริ่มตั้งแต่ ค.ศ.2013-2023 ท่ีอากาศยานรุ่น A320 

และ A321 ท่ีเกิดอุบัติเหตุตอนลงจอด และมีรายงาน

การสอบสวนอุบัติเหตุเสร็จสมบูรณ์

สถิติท่ีใช้ในการวิเคราะห์ข้อมูล 

	 หลงัจากเก็บรวบรวมข้อมลูเสรจ็เรยีบร้อยแล้วจะใช้

สถิติพรรณนา (descriptive statistics) โดยการวิเคราะห์

ความถี่ของข้อมูล (frequency) ค่าร้อยละ (percentage) 

ในการตอบวตัถปุระสงค์ข้อที ่1 และการเรยีนรูแ้บบมผีูส้อน 

(supervised machine learning) ด้วยเนอีฟเบย์ (Naive 

Bayes) ในการพยากรณ์ และส�ำหรับการวัดประสิทธิภาพ

ในการพยากรณ์ในวัตถุประสงค์ข้อท่ี 2 ด้วยเมทริกซ์แห่ง

ความสับสน (confusion matrix)    

ผลการวิจัย 

	 งานวิจัยเรื่องนี้มีผลการวิจัยแบ่งเป็น 2 หัวข้อ คือ 

(1) การวิเคราะห์สาเหตุการเกิดอากาศยานอุบัติเหตุ และ 

(2) การวัดประสิทธิภาพการพยากรณ์อากาศยานอุบัติเหตุ

	 1. การวเิคราะห์สาเหตกุารเกดิอากาศยานอบุตัเิหตุ

	 จากภาพ 4 เวลาในการเกิดอุบัติเหตุเวลากลางวัน 

41 ครั้ง คิดเป็นร้อยละ 61.19 และ เวลากลางคืน 26 ครั้ง 

คิดเป็นร้อยละ 38.81  
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	 จากภาพ 5 จ�ำนวนทางวิ่งที่มีอุบัติเหตุมากที่สุด 

คือ 1 ทางวิ่ง จ�ำนวน 26 ครั้ง คิดเป็นร้อยละ 38.81 และ 

จ�ำนวนทางวิ่งที่มีอุบัติเหตุน้อยสุด คือ 6 ทางวิ่ง จ�ำนวน 1 

ครั้ง คิดเป็นร้อยละ 1.49
	 จากภาพ 6 สภาพอากาศยานในช่วงเวลาที่เกิด

อุบัติเหตุที่มีมากที่สุด คือ สภาพอากาศยานในช่วงเวลาท่ี

เกิดอุบัติเหตุช่วงสภาพอากาศปกติ จ�ำนวน 20 ครั้ง คิด

เป็นร้อยละ 29.85 และ สภาพอากาศยานในช่วงเวลาท่ี

เกิดอุบัติเหตุที่มีน้อยที่สุดสภาพอากาศที่มีพายุ จ�ำนวน 1 

ครั้ง คิดเป็นร้อยละ 1.49
	 จากภาพ 7 อทิธพิลของทีส่่งผลให้เกดิอบุติัเหตเุกดิ

มากที่สุดมาจากปัจจัย “Operational process” จ�ำนวน 

20 ครั้ง คิดเป็นร้อยละ 29.85 และน้อยที่สุดมาจากปัจจัย 

“Organization climate” คิดเป็นร้อยละ 1.49
	 จากภาพ 8 การก�ำกับดูแลที่ไม่ปลอดภัยที่ส่งผล

ให้เกิดอุบัติเหตุ เกิดมากที่สุดมาจากปัจจัย “Inadequate 

supervision” จ�ำนวน 20 ครั้ง คิดเป็นร้อยละ 29.85 ของ

เหตกุารณ์ทัง้หมด และน้อยทีส่ดุมาจากปัจจยั “Supervisory 

violation” คิดเป็นร้อยละ 0.00
	 จากภาพ 9 ในกลุม่ของ “Condition of operators” 

ปัจจัยที่มีส่วนให้เกิดอุบัติเหตุมากที่สุด คือ ด้าน “Physical 

limitation” จ�ำนวน 17 คร้ัง คิดเป็นร้อยละ 25.37 ปัจจัย

ทีไ่ม่มส่ีวนให้เกดิอบัุตเิหต ุคอื ด้าน “Adverse physiological” 

คิดเป็นร้อยละ 0.00 และเหตุการณ์ท้ัง 3 ไม่มีส่วนให้เกิด

อุบัติเหตุ จ�ำนวน 46 ครั้ง คิดเป็นร้อยละ 68.66

	 จากภาพ 10 ในกลุม่ของ “Condition of operators” 

ปัจจัยด้าน “Environmental factors (Technology)” 

มีส่วนให้เกิดอุบัติเหตุ 12 ครั้ง คิดเป็นร้อยละ 17.91 ของ

เหตุการณ์ท้ังหมด ปัจจัยด้าน “Personnel factors” มี

ส่วนให้เกิดอุบัติเหตุ 20 ครั้ง คิดเป็นร้อยละ 29.85 ของ

เหตุการณ์ท้ังหมด

	 จากภาพ 11 ความถี่ของการกระท�ำที่ไม่ปลอดภัย

ส่งผลให้เกิดอุบัติเหตุ “Error” มีส่วนให้เกิดอุบัติเหตุ 12 

ครัง้ คดิเป็นร้อยละ 52.24 ของเหตุการณ์ท้ังหมด “Violation” 

มีส่วนให้เกิดอุบัติเหตุ 1 ครั้ง คิดเป็นร้อยละ 1.49 ของ

เหตุการณ์ท้ังหมด

	 จากภาพ 12 ความถ่ีของ “Incident (No)” มี

ท้ังหมด 41 ครั้ง คิดเป็นร้อยละ 61.19 ความถ่ีของ 

“Accident (Yes)” มีท้ังหมด 26 ครั้ง คิดเป็นร้อยละ 

38.81

ภาพ 4 จ�ำนวนความถี่ของเวลาในการเกิดอุบัติเหตุ
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ภาพ 5 จ�ำนวนความถี่ของจ�ำนวนทางวิ่งของท่าอากาศยานท่ีเกิดอุบัติเหตุ

ภาพ 6 จ�ำนวนความถี่ของสภาพอากาศยานในช่วงเวลาท่ีเกิดอุบัติเหตุ

ภาพ 7 จ�ำนวนความถี่ของอิทธิพลขององค์กรท่ีส่งผลให้เกิดอุบัติเหตุ
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ภาพ 8 จ�ำนวนความถี่ของการก�ำกับดูแลที่ไม่ปลอดภัยท่ีส่งผลให้เกิดอุบัติเหตุ

ภาพ 9 จ�ำนวนความถี่ในกลุ่มของ “Condition of operators” 1

ภาพ 10 จ�ำนวนความถี่ในกลุ่มของ “Condition of operators” 2
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ภาพ 11 ความถ่ีของการกระท�ำที่ไม่ปลอดภัยส่งผลให้เกิดอุบัติเหตุ

ภาพ 12 ความถ่ีของการไม่เกิดและเกิดอุบัติเหตุ

	 2. การวัดประสิทธิภาพการพยากรณ์อากาศยาน

อุบัติเหตุ 
	 จากตาราง 1 “Prob_No” คือ ค่าความน่าจะเป็น

ที่จะไม่เกิดอุบัติเหตุ “Prob_Yes” คือ ค่าความน่าจะเป็น

ที่จะเกิดอุบัติเหตุ และ ถ้า “Prob_No” มีค่ามากกว่าหรือ

เท่ากับ “Prob_Yes” แล้วจะพยากรณ์ว่า ไม่เกิดอุบัติเหตุ 

แต่หาก “Prob_No” มีค่าน้อยกว่า “Prob_Yes” แล้วจะ

พยากรณ์ว่าเกิดอุบัติเหตุ 

	 จากตาราง 2 “Actual” คอื ค่าจรงิของชดุทดสอบ 

“Forecasting” คอื ค่าท่ีได้จากการพยากรณ์จากชุดทดสอบ 

และเมื่อท�ำการเปรียบเทียบกันพบว่า สามารถพยากรณ์

ได้ถูกต้องจ�ำนวน 9 คู่ (true) และพยากรณ์ผิดจ�ำนวน 4 

คู่ (false) จากนั้นคณะผู้วิจัยได้ใช้สมการท่ี 2-4 ในการวัด

ประสทิธภิาพการพยากรณ์อากาศยานอบัุตเิหต ุจากตาราง 3 

และแสดงผลการวดัประสทิธภิาพในการพยากรณ์ ตาราง 4
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ตาราง 1 
การเปรียบเทียบค่า “Prob_No” กับค่า “Prob_Yes”

Number of test data Prob_No Prob_Yes Result (Forecasting)

1 0.000002691171285 0.000000000000000 No

2 0.000000696821136 0.000001853335900 Yes

3 0.000000509215446 0.000000029558786 No

4 0.000005226158522 0.000000351010587 No

5 0.000000469090192 0.000000021450647 No

6 0.000001141344964 0.000000000000000 No

7 0.000000754393253 0.000000005419111 No

8 0.000000032260238 0.000000000000000 No

9 0.000000000000000 0.000000000000000 No

10 0.000000003283631 0.000000453613682 Yes

11 0.000002273283240 0.000000258639380 No

12 0.000000130653963 0.000000077222329 No

13 0.000000016936625 0.000000441013302 Yes

ตาราง 2 
การเปรียบเทียบค่าจริง “Actual” กับค่าพยากรณ์ “Forecasting”

Number of test data Actual Forecasting Accuracy 

1 No No True

2 No Yes False

3 No No True

4 No No True

5 No No True

6 No No True

7 No No True

8 No No True

9 Yes No False

10 Yes Yes True

11 Yes No False

12 Yes No False

13 Yes Yes True
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ตาราง 3 

เมทริกซ์แห่งความสับสนจากผลการพยากรณ์อากาศยานอุบัติเหตุ

Actual Forecasting

Yes No

Yes 2 3

No 1 7

ตาราง 4

แสดงผลการวัดประสิทธิภาพในการพยากรณ์

Accuracy Precision Recall

0.69 0.67 0.40

สรุปผลและอภิปรายผล 

	 จากวตัถปุระสงค์ข้อที ่1 เพือ่วเิคราะห์สาเหตกุารเกดิ
อากาศยานอุบัติเหตุ คณะผู้วิจัยได้ใช้สถิติพรรณนา โดย

การวิเคราะห์ความถี่ของข้อมูล ค่าร้อยละ พบว่า หัวข้อ

ความถี่ของอิทธิพลขององค์กรที่ส่งผลให้เกิดอุบัติเหตุมี

มากที่สุด คือ ปัจจัย “Operational process” สอดคล้อง

กับคู่มือการสืบสวนสอบสวนอากาศยานอุบัติเหตุ ที่เน้น

ให้หน่วยงานที่เกี่ยวข้องก�ำหนดกฏเกณฑ์ของตนเองขึ้น

ในการปฏิบัติงานในการป้องกันอุบัติเหตุที่อาจจะเกิดขึ้น 

(International Civil Aviation Organization, 2016) 

การก�ำกับดูแลที่ไม่ปลอดภัยที่ส่งผลให้เกิดอุบัติเหตุ เกิด

มากที่สุดมาจากปัจจัย “Inadequate supervision” ซ่ึง

สอดคล้องกับงานวิจัยของ Hutman (2023) ท่ีส่วนใหญ่

ผู้ปฏิบัติงานไม่ค่อยได้รับค�ำแนะน�ำที่เพียงพอจึงท�ำให้ได้

รับอันตรายในการปฏิบัติงาน ในกลุ่มของ “Condition 

of operators” ปัจจัยที่มีส่วนให้เกิดอุบัติเหตุมากที่สุด 

คือ ด้าน “Physical limitation” สอดคล้องกันงานวิจัย

ของ Lyssakov and Lyssakova (2019) หากปัจจัย

นี้เกิดขึ้นจะท�ำให้เกิดอุบัติเหตุได้มากกกว่า “Adverse 

Mental” และ “Adverse Physiological” ปัจจัยด้าน 

“Personal factors” มีส่วนให้เกิดอุบัติเหตุ มากกว่า

ปัจจัยด้าน “Environmental factors (Technology)” 

สอดคล้องกับงานวิจัยของ Niu and Krutkrongphan 

(2024) ว่าปัจจัยด้าน “Personal factors” มีผลมากกว่า 

“Environmental factors (Technology)” ในการเรียน

รู ้และปฏิบัติงาน การกระท�ำท่ีไม่ปลอดภัย (Eiampan 

et al., 2022) ส่งผลให้เกิดอุบัติเหตุ “Error” มากกว่า 

“Violation” สอดคล้องกับงานวิจัยของ Mathavara and 

Ramachandran (2022) ที่สาเหตการเกิดอุบัติเหตุมาจาก 

“Error” มากกว่า “Violation” 

	 จากวัตถุประสงค์ข้อท่ี 2 เพื่อวัดประสิทธิภาพ

การพยากรณ์อากาศยานอบุตัเิหต ุคณะผูว้จัิยได้ใช้การเรยีนรู้
แบบมีผู้สอน ด้วยวิธีเนอีฟเบย์ ในการพยากรณ์ ตามตาราง 

1 และได้ค่าความแม่นย�ำ “Accuracy”ด้วยเมทริกซ์แห่ง

ความสับสน ออกมาได้เท่ากับ 0.69 (หรือประมาณ 0.70) 

ตามตาราง 4 ซึ่งถือว่า ประสิทธิภาพในการพยากรณ์อยู่ใน

เกณฑ์ด ีHendricks (2024) และเมือ่พจิารณาจากชดุข้อมลู

ที่ 10 และ 13 (ที่พยากรณ์ว่า จะเกิดอุบัติเหตุ และเป็น
การพยากรณ์ทีถ่กูต้อง “True”) ในปัจจยั “Fail to correct 

problem” และ “Violation” พบว่า มีค่าความน่าจะเป็น

เท่ากับ “1” ทั้งนี้หากท�ำให้ทั้ง 2 ปัจจัยนี้ลดลงได้ก็อาจจะ

ท�ำให้สามารถป้องกันอุบัติเหตุไม่ให้เกิดข้ึนได้เช่นกัน ยก

ตัวอย่างเช่น ปัจจัย “Fail to correct problem” อยู่

ใน “Unsafe supervision” ดังนั้นในเหตุการนี้อาจจะใช้ 
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“Organizational influences” หัวข้อ “Operational 

Process” ในกระบวนการก�ำกับดูแลให้ความรู้ในด้านท่ี

เกี่ยวข้องตลอดจนมีบทลงโทษหากผู้ปฏิบัติบกพร่องต่อ

หน้าที่ และปัจจัย “Violation” อยู ่ใน “Unsafe act” 

ดังน้ันในเหตกุารณ์นีอ้าจจะสบืหาสาเหตวุ่าท�ำไมผูป้ฏบิติัถงึ

จงใจฝ่าฝืนและอาจจะใช้ “Organizational influences” 

หัวข้อ “Operational Process” ก�ำหนดบทลงโทษไม่ให้

ผู้ปฏิบัติท�ำการแบบนี้อีก  

	 ทัง้น้ี จากข้อแนะน�ำในวตัถปุระสงค์ข้อที ่2 อาจจะ

เป็นการท�ำให้โอกาสในการเกดิอบุตัเิหตนุัน้ลดลงเพราะสถติิ

การเกิดอุบัติเหตุนั้นไม่สามารถท�ำให้เป็นศูนย์ได้เนื่องจาก

หลายปัจจัย เช่น สภาพอากาศ หรือความประมาทของ

ผู ้ปฏิบัติเอง แต่ทั้งนี้บริษัทที่เกี่ยวข้องหรือสายการบินจะมี

ผลก�ำไรมากขึ้นหากอัตราการเกิดอุบัติเหตุลดลง ตลอดจน

ส่งผลให้ผู ้โดยสารกลับมาใช้บริการซ�้ำอีกคร้ัง (Granja 

et al., 2024)
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