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Abstract

The objectives of this research were to (1) create thunderstorm nowcasting models and (2) evaluate
the efficiency of the nowcasting models for thunderstorm forecasting at northern Thailand’s airports
with forecasting times in one hour and two hours using machine learning techniques. The input datasets were
obtained from the Meteorological Terminal Air Report (METAR) of nine airports located in northern
Thailand. The hourly METAR reports generated by the Thai Meteorological Department during January
2015 and December 2022, covering a total of 364,382 datasets, were analyzed. All input data were
divided into 5 groups: the group of all airports, airports in the upper northern, airports in the lower
northern, airports surrounded by mountains, 1-2 sides, and 3-4 sides. By using machine learning algorithms,
three classification standard algorithms were applied, including Naive Bayes, Decision Tree, and
Neural Networks. Three algorithmic methods with ensemble learning algorithms, including Bagging,
AdaBoost, and Random Forest, were also used to create classification models. The Synthetic Minority
Oversampling Technique (SMOTE) was used for balancing datasets, and the 10-fold cross-validation
method was employed to evaluate predictive models. According to the results of the data group that
included all airports for one-hour forecasting time, the Random Forest was the most effective model,
with the F-measure value of 76.45% and the Area Under the Curve (AUC) of 0.888. For a two-hour
forecasting time, the combination of neural networks and bagging was the most effective model, with
an F-measure of 30.62% and an AUC of 0.746.
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ngudayai 3 aunudunamionauans lown
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eniAg uiyalan

v = a Ao % 1Y
naudayai 4 aunutunigndeuseu 1-2 oy
laun vieiniaeuglavie wazvineniAeuivalan

ngudeyail 5 aunuduiiiguidouseu 3-4
fu lauA M1eniAe ULl gesdau M1e1n1AeY
wurAdelul MieniA i IraluTe sy
119171AYIUAIUN IN9INFEIULNT V18N 1AYIY
UTUUAT LAZYINDINFLIUUIUITIALNADA

117 1 waz 917 2 1 Judreg1ag1einianig
Tuluguuuutennusia yadeyanvuausenausiy
Toyafuiiduiien 13 diu duanslunisa 2 dadl

919 1: METAR VTCC 011900Z 35010G25KT

1200 R36/1200 +TSRA FEW025CB BKNO35 25/22
Q1013 BECMG 3000 TSRA=




917 2: METAR VTCC 0120007 07009KT
5000 TSRA FEW025CB BKN035 24/22 Q1013 RERA
TEMPO 2500 +TSRA=

9171519 2 1Hen1Y1791n1ANS DU
Usznauluaie 13 diu Ao (1) Uselanaessnesy
(2) $9an191N1AEIU (3) AINTIINIANTITTUY (4)
115M529071MANS TR 85z UUSRTUTR (5) aufaity
(6) VAuAde (7) Aden1susaiuuumgie (8) dnw
211AYUU (9) L (10) gaunglennAuayaungil
ﬁmﬁwﬁw (11) PaNADINA (12) Y10Eniiianfial uag
(13) nMsnensalkwilunaniigeiniAusnuaundu

'
1 a

Fedrwdt (112) Lnnsesataasusznaunis
onfleaineradsinenunaziadosilonsiseiniansdy
wavdud (13) Judrusevetnidunisneinsel
wunldfuanmenniauinaaunduiiesfintunely
2 Efilj’ﬂmi’hwﬁ’] ﬂ%aﬁﬁﬂﬂ’iﬂrend Forecasts lag
szmLLﬁaz%‘[M%gmmmumﬁﬁ 0 WaraINITnaEs
gardlgladiAuundii 3
iloviin1s1usImY1981n AN STUT e
w1 doyatmunazgnuiuliauysaidelusunsy
Microsoft Excel Tagyiauazendeyaiiieliiog

TugUuuufigndestazauysal 2Inn153ATIEYINUTN
Yoyaursdruiigame (missing value) 1inan (1)
anuiananlufunounissvsnteys Jaunud
Toyaiigymodieaiiigndes uay (2) Anuunwies
vesgunsaingainfituiindinisnsiaialinsudou
auysal Selddngadayatuiisly anduinisuas
Heyalvidlugunuutisdeyadioliimsnszaeesiaiy
sULuUwazanaluN1sUsEIIANAYRILUUTIRRY lag
Meavidunauinvazvesteyaldlumidonansds
154 3

Nt 5 naudeyasvgnuuseendu 2 dw
weriirguuuiians fe (1) yadeyafiniu 1¥deya
Tuln.a. 2558-2563 591 6 T thiduiteaeuuaz iy
Ansfnoiiivazay wag (2) yndoyanaaoy 14
Toyalulin.a.2564-2565 52u 2 T vl uitenaaeu
Tanansavhanlddtugadoyailiinenumeunie
3] FeluanAdeiidnisuvadu 2 amauiionisdauun
nstAnmguiinazues tufe liiinmgiuiiazues
(NO TSRA) wagiinngruiiazuas (TSRA) lag iy
yateyaiidlunisaiauvudiaeuanifiniss 4

DATASET

Data Preprocessing

5 data groups

ola

] !
Training Data Set Testing Data Set
! !

Imbalanced Data MODEL

!

1 | 10-Fold cross validation |
Feature Selection Accuracy
l Precision
Classification Eecall
F-measure
| Standard Algorithms | Ensemble
l Bagging - 1
Best Model
Hyperparameter AdaBoost -
Tuning F-measure
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M99 2

§0E 190154 UaAIUY1IDINIANITUY

duil ot nsuuanud
1 METAR UszLand1 METAR
2 VTCC eV DRI PRERRIGEN I
3 011900z Fufl 1 181 19.00 UTC mi¥arian 02.00 u.
4 - mndeuszEUUsnluAITLanY AUTO
5 35010G25KT fimvnsau 350 091 AATIAN 10 wen uazdiaunszlynaAugd 25 uon
6 1200 ViAudde 1200 1ns
7 R36/1200 fdon1suoafiugIgAuUMIIsinelay 36 Witdu 1,200 WAs
8 +TSRA anguinazuasvwIavin
9 FEW025CB BKN035 filus Cumulonimbus §1u 2,500 19 $1u2u 1-2 dauanitavun 8 d7u
wardiiung1u 3,500 W0 $1uau 5-7 dru nvenua 8 dau
10 25/22 9NN ity 25 °C LLaxquQﬁﬁgﬂﬂj’]ﬁ’N Wiy 22 °C
11 Q1013 mmn@mmﬂﬁ’ﬂLLﬁaadisﬁuﬁﬁmLamuﬂma Wwindu 1,013 Jaduns
12 RERA (41971 2) mNuguLsvesHuiinnlfaniidsasantnneunii
13 BECMG 3000 TSRA madilu 2 HalusdrmihasiRangauihazussuiunans addewindy
3,000 tung
A1319 3

TI8azidenAalanyy (attribute) vodayaildlunisive

Y

AENYME AB5UNY Usziandoya Ataya

W_direct AANI19aY Polynomial CLAM, VRB, N, NE, E, SE, S, SW, W, NW

W _speed ALY Polynomial CLAM, LIGHT BREEZE, MODERATE BREEZE, STRONG
BREEZE

GUST AsLinaunsElYn Binomial YES, NO

WW anneniAdagu Polynomial  NO, Light rain, Moderate Rain, Heavy Rain, TSRA,
VC Rain, Obscurations

M_Cloud wanngeufinazues  Polynomial  NO, CB, TCU

QNH AIUNADINA Polynomial Low, MSL, High

Humidity AT UG Binomial Dry, High Moisture

Visibility AUIEY Polynomial A, B, C

Uil 18 atufl 2 Useduiteu nquniau-Aanau 2567 ;?f;;??;:;;ﬂﬁﬂjﬁi%ﬁgma"%




A1919 4
TInIndeyanindlun15a3s19uUUTIaeY

na:a.l%'aa‘.lla U Training Data Set Testing Data Set
yndoya wensal 1 99lue weansal 2 4alas weansal 1 9alus weansal 2 Galus
NOTSRA TSRA  NOTSRA TSRA NOTSRA TSRA NOTSRA TSRA
Saauudunianile 364,382 258,773 2,023 258,782 2,014 102,547 1,039 102,556 1,030
AMAHonaUUY 260,676 185,667 1,531 185,659 1,539 72,653 825 72,650 828
MAwtonauans 103,706 73,106 492 73,123 475 29,894 214 29,906 202
QWIdPNTOU 1-2 AU 76,297 55348 437 55363 422 20,334 178 20,346 166
QL‘UWE’}J@NT@U 3-4 AU 288,085 203,425 1,586 203,419 1,592 82,213 861 82,210 864

2. PsaF1uuUIIaeY

2.1 msuTuyadeyaliauga

TunmAdeiiivadeyaliauga o aandliifn
WgWuiiiazuad (NO TSRA) fiTuiusnnitaalain
WgHuiazues (TSRA) waziidelidenyihnssuiuns
Wiednnsusuanaliaunavesteyaneunisdaiden
andnwae esandeyaitliaunatuinliuuudassdl
anuaaatadeulunnsFeus Tanudnuasdiidiuiy
tovenagnuesiunazligniiansanindudeddny
denadonuwiugvatuuTaadld lnguiuaiy
aunavesvayaniginalanisduilog1aiu vie
wmedn SMOTE lusuddeifldlowasines Optimize
Parameter (Grid) Faglunnsynaniimnzandiniu K
(number of nearest neighbors) Yadlsiazdanoiyia

2.2 MsAnFRNAMIN YL

TunAdeiiifodenBnmedndennadnuns
AfanuAsdostusuUsiaulauasinaudnuas
AlaiAdesoonieuthdoyaluaiauvudiass Lile
mahmdnanuiAatestusiuusitaulalagld 35
Information Gain way Chi-Square ‘ﬁagaﬂ%ﬁ’f%ﬁa
asanuudiaed 8 aaudnvae lown fienisau Anusa
au nMsiinaunselun ewide anmeiniadagiu we
mgelufinAzues ANTUEITNES wagAunADINA

2.3 MsUsuAMISTmasILNvauluwiIde

JuppUNTUSUAMINSmasinanaUseans AW
vasuuuTaadlun1seuivenses lnganauideves
Thummikarat (2020) \Rgafun1sIRaRelsANS AU

TnglfimadiansFeusveandes Iil38nsdumuuy
n3a (Grid Search) HieUSurmTfiwesfivunzay
fanuazlvlinadnsvosuuudassimunzanlaglyl
\Ann1s Over Fitting %30 Under Fitting Tusuddeil
iidulaldloeasines Optimize Parameter (Grid)
wrelumsmamisfiwesiivunrauvesdaneiiu
#LA Decision Tree Neural Networks wag Random
Forest @1u Naive Bayes lifinnsusuainisfines

2.4 N13a319UUTNRBITANDINNNINTFIY
wArdanaIuNITREUIwUUNAY

91NN 2 Lusmsasrsuuudrasadu 2 dau
fio dudi 1 N1sasekuUIIaedlagdanesiuuInsgIu
16iA Naive Bayes Decision Tree Wag Neural Networks
wavauil 2 msadrauvudrasslagdaneifiuunegiu
JfudanesfiunisiSeusuuungy laun Bagging
AdaBoost kag Random Forest LLaﬂu‘ﬁyJumuﬁﬁ]ﬂ‘i’f
%mmauawﬂwu‘lummauwaqLLuumaaa LLaviJium
wsinosvasdanesfiunuduneureunii s
5 ngu feyadagninlUinssiiieniuuudiased
wanzan Inguuusanaiignana 16 (1) Naive Bayes—NB
(2) Decision Tree--DT (3) Neural Networks--NN (4)
Naive Bayes+Bagging--NB+Bag (5) Decision Tree+
Bagging--DT+Bag (6) Neural Networks+Bagging--NN
+Bag (7) Naive Bayes+AdaBoost--NB+Ada (8)
Decision Tree+AdaBoost--DT+Ada (9) Neural
Networks+AdaBoost--NN+Ada wag (10) Random
Forest--RF
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A=A awa & 4

Training-Read Excel SMOTE Upsampling NB NB+Bag NB+Ada RF
Dinp @ Bl & out exa Y ups — = ® ~)— —f g ™ - % mod ] exa g ~ res ¢
exa exal) exal) eaf) "
tes tes|) tes|) tes)— "¢
y / per per D per D per res gl
{,v Select Attributes |/ Multiply o ‘ P"D P“D o res
‘g e ' out res o
o DT+Bag DT+Ada 4
out 4 Hi = y o res 4
el m— exa % m exa % -
b
/' SetRole ~ = o e g
{ tes tes 9
exa [T7 exa
:-E 3 e per per "
or out
per per
out
out
NN+Bag NN+Ada
out
i — exa % mod exa % mod )
exal) exa)
tes|) tes|)
per) per[)
per|) per|)

AN 2 A1TASIILUUTI1809098 RapidMiner Studio

3. NSNABUUTERANTAINLUUIIADY
Tusifeilldnimageuussavsamuuy
9188993875 10-Fold Cross Validation lagiid1yn
Hoyavaasy Faududoyalul w.a.2564-2565 513 2
\loveasunsazuuUSaesiEnsyhauldAfuYe
Foyanlimewusnneuniel uazyhmsinuszavsam
LLUU{l”lammﬁ’]ﬁﬁ’wm Accuracy Precision Recall

kazA1 F-measure

o ddﬂ

4. NSAALABNLUUTIADINANEN

9

1%
av aa aa

SLUQWU’]QEJ‘LJ&Jﬂ']'iﬂ@]LaE]ﬂLLUUf\ﬂaE]\W] nan

q

o

dmsuwsiazngdudeya lneiansanen F-measure a4an
FsazanansninnanInaana Positive ve3uUUs1a0sdl
MULFaINNIIAIUAT Precision kag Recall vl
Usinmsvhueaanaianigiuiiinguss (TSRA Class)
18 anifufinnsandl AUC teauuudiastusazngs

G
Y

A A o aw
139N ldlun1537e
1. Microsoft Excel iiiednifiudaya wn3au
YA LALIATIENTOYANIUUNUNIAT 9

Y

NIANTIVINTUATINE DA W Te
atuinermansuazinalulad

U 18 avui 2 Uszdifiou wguniau-damay 2567

2. RapidMiner Studio ua3asfloftldlunis
AeneieyauazanuuUhaeuielinTmiinhue 39
flowesisnosiivanvarsvielianansauszaiana
foyavunalvgyldognenaids Sniadsdiarudanguly
N15UFUAIMISITLADTVBIUUUTIADINUATINABING
VoY uazinmsuansrateyalugUuuwuIvilvivy

lun1siesgvteyalade gy

NAN15798
1. NANISAFIUUIIAD4

1.1 wanmsusugatoyaliauna

NANTMIAT K Aangaudiniy K-Nearest
Neighbors lnan1suiugndeyaliaunanisinaila
SMOTE saeleiuaismes Optimize Parameter (Grid)
wui1 laAn K vedwsagdane3fiuvindu 1 Tuynuuy

41809
1.2 HanIsARLRNAMEN YA

NN 3 unugiianseuminnsAaLien

AENYEAETS Information Gain waz Chi-Square




WU dmuszernameinsal 1 uaz 2 daluedng
it Sduanihmtnuesaadnuaeianulndifes
fAulunn 9 uUUIaees 2 srezianensel edaals
Rnnumuin ArudnuarALTUEIIMS (humidity) way

iAuade (visibility) dAtnninasieidesiuiinys

4 I

UDNFALANANIINAMENYULDY ] 8819TALAY 39

¥ dnriaaesnndnuazdinanoon lkindeiies
6 Aadnvuriidudeyadfyidiguuudiasinns
nensalnisiinmguitazuesszesdagiu laun
Arv1gan (W_direct) Assaau (W_speed) n1siin
aunsglun (GUST) anwoniadagdu (Ww) wamng

tluiazues (M_Cloud) wagAa1unaaInia (QNH)

1.3 manmsusummsdwesivnzadlunidde

Tumideillflowewsmes Optimize Parameter
(Grid) Fadudsmspumuuunsadmummmn e’
Fmnzay Tngldamsfiweslunise 5 Tunisadns
LLUUﬁwaaq%umwialULLasﬁwﬁqmwuﬁw dwmiusvey
namensal 1 9alusdneni nansusuamnsfiees
TivinlFuuusiansiiadraduin Over Fitting n5e
Under Fitting 1iasarniiletnd1deyanaaeuudn
wuudaesdaunsaviignisiiamgnuiinzues
167 uidmsuszoznameinsel 2 $alusdnemdn 8

wdazUsuAmIimesang o udafnuLALUUIIaDs

A o = o o a '
‘1/W|1miﬂm%mWI‘Ll’]EJmiLﬂﬂW’lqr}JuﬂﬁﬂzuvaG'ﬂ,mﬂ

B squavudunawiie [ mamilenauuu

Information Gain (1 42Tu4)

M_Cloud
Www
W_speed
QNH
GUST
W_direct
Visibility
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Chi-Square (1 Falua)
WW :
M_Cloud
W_speed
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W_direct
GUST
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0 50000 100000 150000 200000 250000

E mawmilenauae B 1-2 dw B g 3-4 du

Information Gain (2 421x9)

W_speed E
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Chi-Square (2 Falua)
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A1574 5
HANITUTUAINI TR auluaIuI T8

dangsviu  wisdwes  souauuduy aawmile aawmile Qw1dausau Qw1dausau
aalle ABUUY ABUAY 1-2 gy 3-4 ¢y
loyg, 299 190 290 190 290 1gu. 298, 194, 2 9.
Decision Criterion gini_ gini_ gini_ gini_ gain_ inform_ gini_ inform  gain gini_
Tree index index index index ratio gain index  gain ratio index
Maximum 9 9 8 8 8 8 8 8 9 9
Depth
minimal leaf 2 2 2 2 2 2 2 il 2 2
size
minimal size 9 2 2 2 2 2 2 2 2 2
for split
Neural  Training 282 138 45 166 80 291 294 255 262 152
Networks Cycle
Learning 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Rate
Momentum 0.7 0.9 0.5 0.8 0.6 0.6 0.8 0.9 0.7 0.7
Random Number of 19 81 22 51 14 12 13 71 13 81
Forest Trees
Random gain gain_ gain_ gain_ gain_ gain_  inform gain gain_ gini_
Forest ratio ratio ratio ratio ratio ratio gain ratio ratio index
Maximum 7 7 12 12 10 10 12 12 8 8
Depth

2. HANISNAFBUUILRNSNINVDILUUDNADY

Han snaaeulsEansamlunisnensainig
Aemngphuihazues dwiusseznamennsel 1 92lus
F19981 waneRIm159 6 Wefiansanan Accuracy
veanyadeua wuii de1 Accuracy 110N 98% lu
yndane3iiu lnsiinannisvineeanaliifnnigau
finzuedligniesdadunaaiifiunnnittuies us
yNfaNsaaInan F-measure fianansnysdianis
N13viuIgeIna1anIsinnIeduinAzued WUl A7
F-measure gean d13u (1) nqudeyasinauiuiy
AAwmile fia Random Forest Lyifiu 76.45% (2) ng
JayaniAmilenauuu Ao Neural Networks iy
77.64% uag Neural Networks 59ufU AdaBoost
Wiy 77.64% (3) nqudeyaniamilenauans As

o o

U 18 avui 2 Uszdifiou wguniau-damay 2567

NIANTIVINTUATINE DA W Te
atuinermansuazinalulad

Neural Networks 11117U 70.69% Neural Networks
32111V Bagging t11AU 70.69% waz Neural Networks
$2uriu AdaBoost 11U 70.69% (4) naudeyaauis

'
=

Junilgudeuseu 1-2 Ay Ao Neural Networks 374

)

fiu Bagging LU 69.12% uaz (5) ngutayaauudu

PHNW1aDUTBU 3-4 AU AB Random Forest WAy

)
77.53%
Han1snaaeulsEansamlunisnensainig
Remgpuihazues dwiuszeznamennsal 2 9alus
F190t1 waneRIm1se 7 Wlefiansandn Accuracy
YeanYAdeua Wull de Accuracy 1131 98% Tu
yndane3iiu lnsinannisviueeaialidifinnige
fihazuesligniesdadunanaifinnnitdues was

LWANII5UNDINAT F-measure TIANUITOUITLANE




fansvihunevesnatanIsiianguiiavues wuin
wuusaesiivinnsanuiluadsiiiian F-measure 104
uiazyndoyailaifa 50% dufe Siliannsainne
nsinngHuiinzues dmsussesnameinsal 2

1%
(% Y U

ninfiadenduwuuiaesiidfignd miungudoyatiu

lagasunanIsAnEeNLUUTIaeIAanvasLaaz gyl

9
1%

Poyaiigniuniiaszinudnuaruiauuiuuwans
AINNTN 8 FedmTusTIzameInTal 1 92lus wuan

Pilustrmildegagneas {11 F-measure 581319 69.12-77.64% Uaga1 AUC

oo C s 5EWINN 0.8-0.9 Fednindunuudtasafiviiauled
3. Nan13AALERNLUUIIARINIATEA

[ L4

(Senawong et al., 2022) LAFINSUSTULIATNINT o

=

nsfadenLuUdnaeIiAfignaviansana 2 9l lunn o danesiiudadiuszansamnisiuneg

NIAABUUTEANSNINUBILUUTIADIIINAITIE 6 msfiamgiuinazuedlalifivingians lnefia1sanain

waz 7 LieviinsiUieulfisudn F-measure §9ga A1 F-measure 7iflA35z131 21.39-30.62% Laziile

a a

vosusaznautoya lnsursngudeyandanesiiuier  farsand AUC wuidn ilusuudiaesiifiussdnsam

o
g

ANAAEIAULUUTIABININITFINITI LU

a {

F-measure iUty §3389gR1507A7 AUC 91370

A1574 6
HANITNAAEUYSEENENINYDIUUTIABNF IS UTSeeIaINgInTal 1 Tlud

ngu Performance LUUNaa9
foya danasNuNINIgIY danasfiunsiFeuiuuungy
NB DT NN NB+Bag DT+Bag NN+Bag NB+Ada DT+Ada NN+Ada  RF
suauwdy  Accuracy 98.88 99.49 99.61 98.88  99.49  99.61  98.88  99.49  99.61  99.61
MAMID b ision 4599 9690 9731 4599 9690  97.32 4599 9690 9731  97.32
Recall 64.10 5111 6275 6410 5111 6285 6410 5111 6275  62.95
F-measure 5356 6692 7630 5356  66.92 7637 5356 6692 7630  76.45
AUC 0.884 0.856 0.888 0.884  0.856 0.851  0.859  0.758  0.886  0.888
meawde  Accuracy 98.77 9950 99.57 9878  99.50 9958  98.77 9950  99.57  99.58
Aauuy Precision 4650 9615 93.66 4694  96.13 9615 4650  96.15  93.66  95.40
Recall 66.06 5745 6630 6606 5721 5758  66.06  57.45 6630  65.33
F-measure 54.58 7193 77.64 54.88 7173 7202 5458 7193  T77.64 7755
0891 0.869 0862 0891 0873 0880 0867 0790 0831  0.89%
mewidle  Accuracy 99.07  99.67 99.68 99.07  99.67  99.68  99.07  99.67  99.68  99.67
POUAN procicion 39.42  100.00 10000 39.42  100.00 100.00  39.42  100.00  100.00  98.32
Recall 57.48 5374 5467 57.48 5374 5467  57.48 5374 5467  504.67
F-measure 46.77 6991 T70.69 4677  69.91  70.69 4677 6991  70.69  70.27
AUC 0863 0788 0.833 0863 0788  0.852 0829 0769 0859  0.840
24N Accuracy 98.87 9959 99.59 98.87  99.50 9959  98.87 9959  99.59  99.58
126y gy 3920 100.00 9895 39.20  100.00 100.00  39.20  100.00 9895  97.92
Recall 55.06 5225 5281 5506 4213 5281 5506 5225 5281  52.81
F-measure 4579  68.63 6886 4579  59.29  69.12 4579  68.63  68.86  68.61
AUC 0.864 0786 0.814 0.864 0736  0.867 0832 0761 0764  0.797
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A1519 6 (7D)

ngu Performance WUUT1809
foya daNaINUNINTFIU danasfiunlsieuiiuungy
NB DT NN  NB+Bag DT+Bag NN+Bag NB+Ada DT+Ada NN+Ada RF
QN Accuracy 98.89  99.49 99.60  98.89 99.49 99.61 98.89 99.49 99.60 99.61
346 Precision 4753  96.40 9371  47.58 96.40 96.20 47.53 96.40 93.71 96.21
Recall 65.97  52.85 6574  66.09 52.85 64.69 65.97 52.85 65.74 64.92
F-measure 5525  68.27 77.27 5532 68.27 77.36 55.25 68.27 77.27 77.53
AUC 0.890 0.864 0.867  0.889 0.864 0.898 0.851 0.767 0.893 0.895
f1919 7

KANTTNATOUUSEANENINYBILUYTIAIE IS US eesIaIne1nsal 2 $alud

ngu Performance wuudIaes
Toya JaNaINUNINTFIU danasiiunisiseuiuuungy
NB DT NN  NB+Bag DT+Bag NN+Bag NB+Ada DT+Ada NN+Ada RF
sty Accuracy 98.25 99.14 99.15 9825  99.15  99.09  98.25  99.14  99.15  99.14
MANID b igion 2115 9133 9195 2119 9349 6239 2115 9133 9195  91.81
Recall 27.96 1534 1553 28.06 1534 2029 2796 1534 1553 1524
F-measure 20.08 2627 2658 2414 2636  30.62  24.08 2627 2658  26.14
AUC 0.762 0.688 0746 0762  0.687 0746 0711  0.600 0578  0.746
mamile  Accuracy 98.09  99.04 99.04 98.09  99.04  99.05  98.09  99.04  99.04  99.04
ABuUY Precision 2334 9500 91.89 2332 9301 9504 2334 9500  91.89  93.01
Recall 30.56  16.06 16.43 3056 1606  16.18 3056 1606 1643  16.06
F-measure 2646 2748 27.87 2645 2739  27.66 2646  27.48  27.87  27.39

0.775 0.705 0.761  0.775 0.705 0.762 0.725 0.582 0.727 0.758

mewmide  Accuracy 98.62 99.40 99.40 98.61  99.40  99.40  98.62  99.40  99.40  99.40
POUENY precigion 1395 88.89 9200 13.80 100.00 8846 1395  88.89 9200  88.46
Recall 2030 11.88 1139 2030 1089 1139 2030  11.88 1139  11.39
F-measure 1653 2096 2026 1643  19.64  20.18 1653  20.96 2026  20.18
AUC 0.788 0589 0703 0704 0598 0701  0.656 0562  0.703  0.678
2 Accuracy 9836 99.28 9927 98.36  99.28  99.25 9836  99.28  99.27  99.26
L2 gy 1452 100.00 86.96 1452 9524 7600 1452 10000 86.96  80.00
Recall 21.08 10.84 1205 21.08 1205 1145 2108 1084  12.05  12.05
F-measure 1720 1957 2116 1720 21.39  19.90 1720 1957  21.16  20.94
AUC 0721 0635 0704 0717 0624 0710 0703 0554 0560  0.700

‘ o ~ NIANTIVINTUATINE DA W Te
2 Uszdnhnu neunIAL-daninY 2567 AU mansuasinalulad

3

=p

I 18 atiu




A1519 7 (79)

ngu Performance LUUNa09
Jaua o an o an o v ,
Y aanaiwummﬁwu aana‘mummaugwunqu
NB DT NN  NB+Bag DT+Bag NN+Bag NB+Ada DT+Ada NN+Ada RF
fan Accuracy 9821 99.11 99.11 9821  99.11  99.11 9821  99.11  99.11  99.11
34 onu Precision 2243 9324 90.73 2245 9324 9384 2243 9324  90.73  90.73
Recall 2951 1597 1586 2951 1597 1586 2951 1597 1586  15.86
F-measure 25.49  27.27 27.00 2550  27.27 2713 2549  27.27  27.00  27.00
AUC 0773 0701 0760 0773 0701 0764  0.714  0.580  0.671  0.759
71319 8
o A ° A ' & A PN
FUNANITAALADAKUYD1ADNTIANGAYDIUA S WUV AU IN T
X 4 - . o o -
Wunauudy WUUINABINANER n1InagauUsEaNsnW
Accuracy F-measure AUC
< & v v
STELIAINYINTAl 1 Y2LUeU19UN
sanauudunamile Random Forest 99.61 76.45 0.888
MAwonauuY Neural Networks 99.57 77.64 0.862
MAwonauans Neural Networks+AdaBoost 99.68 70.69 0.859
ANdeuTeY 1-2 AU Neural Networks+Bagging 99.59 69.12 0.867
QWNdOUTY 3-4 AU Random Forest 99.61 77.53 0.895
¢ 1 v £
szuzaIneInsal 2 F2luet19utin
sauuiunauile Neural Networks+Bagging 99.09 30.62 0.746
AMAmMtanauU Neural Networks 99.04 27.87 0.761
AMAmTanauans Decision Tree 99.40 20.96 0.589
WIFBUTOU 1-2 AU Decision Tree + Bagging 99.28 21.39 0.624
NW1FBUTOU 3-4 AU Decision Tree 99.11 27.27 0.701
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aunduniawmilovessenelng fie lwanuiiipzues
anmeiniadagiu wazaudian lnguuudiass
Random Forest diUs¥AnEa1nn1snensain1siinmng
Wuihazuedlfivian fiesan wuudaes Random Forest
fndnmsvesmslgauliivanadulunisiune wagasy
NAN1TIIBAIENNS Vote nadndfignidonuiniign
Fadunudnuaziitisanauianainvenudnyny
999n13LAA Over Fitting U99luUT1a99 LagdInsu
szeznamensal 2 Hilusdravmuin qudnuay
Aenuddnpnniigaliuiueulneiasuudasiua
uwiazngudeya Jamnuvuitassiiszansainely
mMsnensainsiamguiinnzues Ssdenadeariy
NAN15398994 Srithagon et al. (2021) Fnu3n wuu
$raesfianuusiudianiessernameinsaiuiuiu
awainngateyadninliannsaadaguiuuns
Bousfigndedliiunuuuiasdld oraidewnednums
pliomadssnalveiiegluaniounazarsusznay
MNQQ‘QEJ&J?N]EJ’IL‘UgEJ‘L!LLlJa\ﬁ’mL%’JLLUUI&@EULLUU
wiuau damalinisainnisalanineiniealmtnly
szoznameInssl 2 Falusdanausiudosas uay
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youmLardn v iufivesau iy wui wuudiaes
Anfigauesusiazngudoyalvidanuusiudiunnsng
fufsadnositu lensdonuuuiaeslaluly
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