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Abstract

This research aims to develop graduates’ employability prediction models through rule-based
classification techniques with SMOTE in imbalanced data sets. After analyzing the data, a
class imbalance problem was found. In order to improve the quality of the data, SMOTE was used
to increase the minority class. Then rules-based classification techniques (RIPPER, PART, and PRISM)
were used to build the prediction models. Moreover, 5-fold cross-validation was utilized to split the
data into the training and test sets. This research has measured performance models with accuracy,
precision, recall, and f-measure. The experimental results demonstrated that the PRISM algorithm

combined with SMOTE had the highest efficiency, with an accuracy of 85.69%, precision of 85.60%,

recall of 85.70%, and f-measure of 85.60%, respectively.

Keywords: graduates employability, rule-based classification, SMOTE
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IF condition THEN conclusion

Fo8 19U

R1: IF age = youth AND student = yes THEN
buys computer = yes
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to Produce Error Reduction Thakur (2020) 101015
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A9 (1) n3taseyiiule (growth) @sedduveng Loy
iinngauduiiviwelaud3meaia (2) nsdnus
A1 (pruning) v‘hmséfﬂﬂgﬁamﬂizﬁw%mwmiﬁﬂui
nQoon (3) M3viudszansa1n (optimization) finns

Condition 1
(Root Node)

dinAdnuazilUluwanguiuvsengngnasiedy
Toadlududl (1) uae (2) wag (4) n1sidenng (selection)
3 = Ao @& Yy o d'
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- PART Mohamed Salleh and Omar (2012)
\HumedansFeuingiiviaunain Ca.5 uag RIPPER
Tgsauta 2 mafiadndneiu feauiu Ae annsnideu
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- PRISM Chiroma, Liu and Cocea (2018) ¢
gnuugiilag Cendrowska AildAnundgymuAeadu
§ane3iu 1D3 ¥4 Quinlan Faldszytedindiddny
uaUsEnsvesdaneiiu ID3 dailrnstinulivangay
dmsunanelau sty iiloanlamenanldan
\auodaneifiuiiFendt PRISM Fedane3fiuiilignss
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F1deusIuIuIN

Class Label

Condition 2

1 (Leaf Node

Class Label
1 (Leaf Node

AN 1 Rule-Based Classification

Class Label
2 (Leaf Node

Note. From Rule based data mining classifier: A comprehensive guide 101, by Hevo Data Inc., 2024,

retrieved from https://hevodata.com/learn/rule-based-data-mining/
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5.1 Confusion Matrix Markoulidakis et al. (2021)
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A1379 1
#1379 Confusion Matrix uanaTIuIuYeddayalu

umazsznm
Actual Predicted Class
Class Class = Yes Class = No
Class = Yes TP FN
Class = No FP TN
Tned

True Positive--TP tdudruiudeyauszinmduuan
wazgniwunUsznninduuan

False Positive—FP {udhuiudeyauszinmduau us
gnimunuszianinduuan

True Negative-TN tJuguiudoyausziamduau
wazgndwunuszianinduay

False Negative—FN idudruiudayadszanmduuin
wignduunUszinninduay

5.2 fdSafanunsaAuaalléann Confusion
Matrix Markoulidakis et al. (2021)

- AMALLUEN (precision) LUA5IAAL
wiugIveIfILuy lngNasuenfiazaaid

Precision = TP/(TP+FP) (2)

- AAusEdn (Recall) Wunisiaanugn

ABIVDIAILUU IBNIITULENTIAEARE
Recall = TP/ATP + FN) (3)

' = Y

ANANULIEY (F-measure) LDuUN15IAAN
Precision kag Recall W5aunuU8ImibuU tngna1sadn
weNiazAand

F-measure = (2 x Precision x Recall)/ (4)
(Precision + Recall)

- AnAugNeaY (accuracy) Wunisinay
ONABIVBIILUU IAeTATUNTINYNAGIE A U

True Positive ¥8nARNATINAU

Accuracy = (TP + TN) / (5)
(TP + TN + FP + FN)
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dudurouiiGuduanmafuusdeya
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Tuyhvestadin W Ing1deT1vAuAsUTH 31U
11,971 ssubou vianiuasdunisnsaaoudoya
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S5-fold cross validation

Test 20% Train 80%
Train 20% Test 20% Train 60%
Train 40% Test 20% Train 40%
Train 60% Test 20% Train 20%

Train 80% Test 20%

S

Model Construction

Model Evaluation
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A1519 2 (D)
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ANasunY
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Th)

ANasuIY

1

2
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Gender

Major

Faculty

Gpax

M = 918

A1973%0 BRI IRN
JEUUVBY ISCED

1= IUiLmsuﬂ"ﬂULLasqmauﬁ’ﬁ
2 = NNSANYI

3 = favzuavuywe

4 = FapUAIENS 15aN5AERS
LAz AN TEULA

5 = N1SUINISTINIUALN YUY
6 = INYIFERS IR
AAAAASLAYEDS

7 = waluladansaumnelay
nsdeans

8 = IMINTIU, PAAMNTTUUAL
ARFRGERN

9 = INWATANERNS WWAEARS
nsUsTaaLardnILnme

10 = guamiazadannig

'
=

ABENANEN

01 = NFNAVINYIFNANThAY
walulad

02 = NFUANVINYIAARNTAVNIN
03 = nauadenuAansLaY
UYwuAIEnT

\nseLRduazay

G1 = 0.00-2.00

G2 = 2.01-2.50

G3 =2.51-3.00

G4 = 3.01-3.50

G5 =3.51-4.00

47

o
N

18 @

)

U

<
1

5

6

7

8

9

Honor

Hometown

Jobstatus

Jobtype

Talent 1

WesAtlew
First=tAgsAtoususu 1
Second=lAgsAlaudunu 2
Non=é15an15@nw
piinavesdaniaiidy
nldwn
Bangkok=N3unnunIuAT
Central=n1ANa"4
North=n1aLnile
South=nala
Northeast=n1Agiusanidsunile
Eastern=n1Anziuson
West=n1AnnzIuan
A0TUNINNTTYINU
Full=y1n91udsean
Free=yIn91udase
UszLnnaudivh
Gov=thsmmsdmihivinenusy
State=553a1M3
Comp=wiinNuuIE/eeRnIgsny/
LONU
Free=l91U0909N15/01 TN a5y
Agri=LNEnINITU

Etc=3u 9

ANNEIUTOTNLAIY]
A=n1ee19useina
B=n15ldmauines
C=AaNTTUFUNUINTT
D=AaUz/IMUsITN
E=uAad/aun3tuies
F=n15d0dns

G=N19AUE

H=1y4]
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A1519 2 (7d)

A1519 2 (D)

Aeu Th) AND5UY anu Th) ANB5UY
10 Talent2 @ayuaunsafivee? 15  Period SLYLNIAINNTIAIIEYN
A=AWA9UTENA PO=l@9uriudi
B=n15maufiames P1=1-3 \fiau
C=Aanssu&unuINIg P2=4-6 LU
D=fAauy/TRlusssy P3=7-9 \fiau
E=ungfal/aun3duios P4=10-12 \fiou
F=n15&0d15 P5=11An31 1 U
G=N15ANUIN P6=lRaNUSENINIAN®WN
H=laig
11 Talent 3 AUEIUITONLAY3S o o .
NPT 2 AENEULT 15 S28IaNIs ey
A=z i Bueradnvasilunquuestoyaildlunisdun
B=nslinaniiomes Taya lnewuseanta 7 ngulaun
C=A9NTIUAUNUINIG v e oA
PO=lAauviud
D=Aauy/TausIsu .
. P1=1-3 \fiau
E=ugdal/aun3duios
F=n13d0813 P2=4-6 1oy
G=N13AUI P3=7-9 \foU
H=lail P4=10-12 \iiou
12 Workplace piiniadaniaiiléauvia DA
P v P5=11nn71 1 U
Bangkok=N3NNUNIUAT 5 L.
P6=lAausErINadnen
Central=n1ana14
North=n1awile
South=aalé 2) nsin3eadaya (Data Preparation)
Northeast=nazJueenidsunile Tudupsunswseudeyadmiuinmilosloys
Fastern=n1Anziuoon Mg lUldlun1simsedt §Ideldindayaiilaann
West=n1aazTuan nsuTIuTwdeyasinduneuneunin feseluil
13 salary  Quilew/seldiadedeieu 2.1 myianuazeInteyauarulaitaya
Low=61111 10,000 lefinsandeyaiilaudiiitogauvinisdine wui
Medium=10,001 - 30,000 - dayaflarfimely (missing value) nsdl
High=1nn71 30,001 JulY sudeuiuiiteyanuamednuinnlaliisinsedeu
14 Match NuivhesafuannGey (Ignore the tuple) wantusenly waynstiszidou

Yes=m54 No=lins4

¥ o
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Andayadiiimely wu deyagiinavesdminiiiy
Qi Mvevne andy © 7 wWaewdu “aenans”

- Jayanilauiauni (outliers) Toyasuniu

(noisy data) Tayaiiauliiaenmdesiu (inconsistent
data) lnedanislvifianugndesauysal

- mauvasteya Tutuneumsudasdoyaly
wangaudmdunsliou lunuiteaded faails
FonldTusunsu Weka unldlunisadrsdinuuiddios
FounSeuwiueuy Wegluguuulnd arff faeeneds

A1 3 i lluauidey

2.2 mIguiindaeganguiios SMOTE
Tuideliinmamadanisduiiudedanguies
SMOTE Tu class Aifid1urudeyatios léun class PO
P2 P3 P4 P5 uay P6 fneogenann 4

NSRNYIINITFULLAIDE NG UTRY 68
walla SMOTE wafilel class Nvin1sduiiiudiedi

1% ~

eidoyaflumnefiuunn fann 5

Y

@relation npru-finnish
@attribute Gender {M,F}
@attribute Faculty {1,2,3}

@attribute Gpax {G4,G5,G2,G1l,G3}
@attribute Honor {Non,Second,First}

OJonds WN

O

@attribute Jobstatus {Full,Free}

@attribute Major (1,2,3,4,5,6,7,8,9,10}

@attribute Hometown {West,Central,Eastern,Bangkok,South,Northeast,North}

10 @attribute Jobtype {Comp,Free,Gov,Etc,State,Agri}

11 @attribute Talentl {A,D,H,B,C,G,E,F}
12 @attribute Talent2 {H,C,B,F,G,D,E,A}
13 @attribute Talent3 {F,D,B,H,A,G,C,E}

14 @attribute Workplace {Central,Northeast,West,Bangkok,South,North,Eastern}

15 Qattribute Salary {Medium,High, Low}
16 Q@attribute Match {Yes,No}

17 @attribute Period {PO,P1,P2,P3,P4,P5,P6}

18
19 Q@data
20 M,2,1,G4,Non,West,Full,Comp,A,H,F,Central,Medium, Yes, PO
21 F,3,2,G5,Non,Central, Full,Comp,D,H,D,Central,Medium, Yes, PO
22 F,4,1,G4,Non,Eastern,Full, Free,A,C,B,Central,High,No, PO
23 F,2,1,G4,Non,Bangkok, Full,Comp, H,H, H,Central, High, No, PO
24 M,2,1,G2,Non,West, Free, Free,B,B,H, Northeast,Medium, Yes, PO
25 F,6,1,G2,Non,Eastern, Full, Gov,C,F,A,West,High,No, PO
26 F,3,1,G4,Non,Central, Full, Comp, D, B, G, Bangkok, High, No, PO
27 M,1,1,G4,Non, South,Full,Etc,C,B,B, South, Medium, No, PO
28 F,4,1,G2,Non,Bangkok, Full, Comp, H,G, H,Central,Medium,No, PO
29 F,2,3,G1l,Non,Bangkok, Full, Comp, H, F, H, Central, Medium, No, PO
30 F,6,1,G3,Non,West, Free, Conp, C, G, B, Bangkok, High, No, PO
31 F,3,3,G4,Second,Central, Free, State,H, F,H,Central,Medium, Yes, PO
32 M,4,3,G4,Non,Central, Free, Comp, C,H, A, Bangkok, High, Yes, PO
33 M,2,1,G3,Non,Central, Free, Comp, D, D, B,Central, Low, Yes, PO
34 M,4,2,G3,Non,West, Free, Free,H,H,C,Central,Medium, Yes, PO
35 F,8,3,G4,Non,Northeast, Full,Agri,B,E,C, South,High, No, PO
36 M,2,2,G2,Non,West, Free, Free,G,B, F,West,High, Yes, PO
Jormal text file length : 332,320 lines: 5,988 n:1 Col:16 Pos:16 Unix (LF) UTF-8 IN

A 3 ulasdeyalvieglulild arff
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Selected attribute
Name: Period

Missing: 0 (0%) Distinct: 7
No. Label Count
1 PO 648
2P 2348
3 P2 1216
4 P3 270
5 P4 305
6 P5 314
7 P6 867

Class: Period (Nom)

I’I 305

AW 4 wansduutayalunsiazaand

Selected attribute

Name: Period
Missing: 0 (0%) Distinct: 7
No. Label Count
1 PO 1620
2P 2348
3f5P2 1824
4 P3 1350
5 P4 1525
6 P5 1570
7 P6 1734

Class: Period (Nom)
1824

1
1525
I

A 5 uuteyanarantausudiy SMOTE

Type: Nominal
Unique: 0 (0%)
Weight
648
2348
1216
270
305
314
867

v | Visualize All

867

IM
Lo

9 |

Type: Nominal
Unique: 0 (0%)
Weight
1620
2348
1824
1350
1525
1570
1734

v | Visualize All

|7|

Log ‘ x0
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3) NISWAILIAILUUNWEINSAl (modeling)

Waunsauuunensal laglaviinisiuseu
Weudienmaialunsaanisainmenisiauise
wedamilesfeyaimnzautudeyailissansam
firan nssuundeyasiongiithanldiussuiieuly
ATy 91w 3 wialla lawn RIPPER PART uway
PRISM B3¥ia1usamiu madanisguifindogangy
1oy SMOTE

4) N1505298UUSLANTAINAILUY (evaluation)

Tumsiadsgansnamuessnuuluidasinaiia
aaa o = =~ Y v
nhwdisuiisy lagldaianugnaesveiuy
91889 hpviNTdendeyad miuSyus Lavdoya
dmfunadeu nuideilidenldisnsguiiendeya
WUUANLIEINTY 5 nau (5-fold cross validation)
JunsinvsedvsnminuudasduunUssinvdoya
menmsuustayasandu 5 dadruauit 9 fu uus
[ ¥ ] a ! = o
Wudeyadeu 4 duuaydn 1 druilenagauazyiniu
Fraduasu 5 seu A lunfeuiewiniiauiie

[

2 & Y% Aa A |
AR] uaﬂf\]']ﬂu&]ﬂL‘Vill']%allﬂumaﬂuamuﬂiuqmimuqﬂ

NAN15398

N1IAMUIAIUUNEINTAIAIEN1 5T U
vesaudinnlewmalan1sduundeyaniongsiuiu
Bnsguiindedenquissuuyadoyaiiliauna
(SMOTE) lunuAdeillfidennisduundeyasaengi
anldiseuiieulunuide i 3 wella laun
RIPPER PART uag PRISM Gsvianusanifu inadanis
duifiuognengutios SMOTE lagnsinuseansam
VYBIMILUUIINAIAINYNABY AAUUIUET AR
s¥@n wagArAwIBs Faldinsisuiisudoya
wuRaBsLasdoyaldUsuUsEsmadanduia
Aegengutios SMOTE asulananisng 3

wAllA RIPPER kamyinusgansnmdanaing

RIPPER laglddayawuunaau lanadl Arrinugnaes
WINAUSaEaY 52.19 ANANUBLUELINAUSDEaY 58.70
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ANANUTEANMNNUSEAY 52.20 WATAIAINUMAIY

v i

wiriuSeway 48.70 wazdeyaniuSuaunateyanieds
SMOTE lasadl AIAINYNABY WINAUTeEAY 73.74 f
APULLUEWNINUTBEAY 72.70 ANAINNSEANNINU

Sp8ay 73.70 LATAIANUMIELINUSYAY 73.10

wAtlA PART wan15inUsza@nsninsanasiu
PART Tnglddoyanuudada 16 Aranugnios
Winiuesay 62.62 Arpuuugviniuieag 60.70
ArAusEAnItUSerar 62.60 WavAIALLAIE
wihfudesas 61.40 uardeyaiiuiuaunateyarieds
SMOTE Iéisil Armnugndfes iwhifufesas 78.62 A1
ANUNUEWYINAUSEaE 79.80 ANAINUIEANYINAY
$avay 78.60 wazArAuiswnuSesay 78.90

a

wAtlA PRISM wan1sinuszansnimdanesiiu
PRISM Tneldtayauuudndn Tadsd Aaugnies
Wwinduseyag 73.84 manuiuginAuSesag 73.60
A1ANsEANWINAUSeEar 73.00 wazAIAUWILT
wiriufesay 73.10 uazteyaiuuaunadeyaryis
SMOTE I#sil Aranngndes iwhifufesas 85.69 A1
AMUWIUENAUSoaY 85.60 MANLSEANWINAUSDYAE
85.70 wazAIAUWIBAVINTUSaaY 85.60

nnNsUTBUEUUIEANEANYBISaNe STl
WU Snuuiildansanesiiu PRISM saufunisusu
aunadeyareis SMOTE fuszavsnmgsiian lng
fApnugnees wiriusesay 85.69 ArAuuuEN
Wwinusesas 85.60 AANTEANVMNAUSPYaE 85.70
LagAPLIBainuSa Ay 85.60 Wagdangang
fiatalgainsanadfiau PRISM faa1w 6

Aty Az ITeRaienmiluuangana iy
PRISM sauffumsuiuaunadeyanieds SMOTE 1
WanndwuuneInsainznsiivuihvesindaseld




M1919 3

KANTNNABUUANFEEANDSIY (798a%)

ANUSLRNTNINIINNISNAFDUAILUU

> o
£ S 5 S
-l:' —_ — —_— (%]
T 5 G © 8
o O e 0 o
Ly 5 v & £
< < o o L
Rule-Based Classification
RIPPER 52.19 58.70 52.20 48.70
PART 62.62 60.70 62.60 61.40
PRISM 73.84 73.60 73.00 73.10
Rule-Based Classification + SMOTE
RIPPER 73.74 72.70 73.70 73.10
PART 78.62 79.80 78.60 78.90
PRISM 85.69 85.60 85.70 85.60

IfMajor =10 and Talent3 =B and Hometown = North then PO
If Gpax =G5 and Major =5 and Talent1 = F then PO
If Honor = First and Talent2 =A and Major = 5 then P1
If Honor = First and Major =3 and Talent1 = C then P2
IfFaculty =1 and Talent2=F and Gpax =G2 and Talent! =H
and Major = 6 then P3
IfMajor =10 and Talent! =G and Faculty =3 and Gender = F then P4

M 6 fed1angiiliaindanaiiiu PRISM

n15aAUsI8Na

nn1sneaeslaeldinaiamilosdoyaly
n1sAUITEUUNEINTaiNIEN ST g
wazuAaymdeyaliaunanimain SMOTE Wuil

nswidaymdeyaliaunamewaiia SMOTE
mmsaLﬁuﬂisﬁm%mwlﬁéfmwLﬁu%ﬂuﬁqﬂmﬂﬁﬂﬁ
IfianFeuiiou Wefiansandusn arunsoasy
¢ Aanugndes iistuadsdosay 16,47 ArAnu
wiufinduadedosay 1503 Aauszandiuiu

WAYIREAY 16.73 WATAIAIUNNELALTURRYSDYAY
18.13

Fnuumanselanninadia PRISM iushuuud
fiuszavsnmlunisaanisaigedign Samadla PRISM
\Dumeadindislgassvanendnifiendnidsanisainang
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USvaunavasteyamels SMOTE udwhlilsydvznm
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-if major =10 and talent3 = b and Hometown
= north then PO

01 8197310 = FUAIMLATATARNIT AN
ansaiiiay 3 = mMsldreufiunes ilduu = 1A
wile Wd srezlaIn1siaeui Ae lasusiug

- Gpax = ¢5 and Major =5 and Talentl =f
then PO

§1 nsneAvazan = 3.51-4.00 @1971397

NSUINITTINMALNNUNIEY ANUEINTONLAY 1

AN5EeaNs WA svuznaINThEwi A Teeuriui
- if Hometown = West and Major = 1 and
Jobtype = Comp and Gpax = G4 then PO
01 ailduun = arenzduan @191 =
Wswnsunll Ussnneuiivh = sdhauuisn/edns
3379/1eNTU \nILRAETaY = 3.01 - 3.50 Wa1 Sz
nanslaauin fe leeusiudi
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