Synergistic effect of combination deltamethrin and piperonyl butoxide on behavioral avoidance and mortality responses of Aedes aegypti L.

Authors

  • Pungasem Paeporn National Institute of Health, Department of Medical Sciences
  • Sunaiyana Sathantriphop National Institute of Health, Department of Medical Sciences
  • Kanutcharee Thanispong Division of Vector-Borne Diseases, Department of Disease Control
  • Phubeth Ya-umphan National Institute of Health, Department of Medical Sciences
  • Pongsakorn Mukkhun National Institute of Health, Department of Medical Sciences

DOI:

https://doi.org/10.14456/dcj.2021.69

Keywords:

Aedes aegypti, excito-repellency test, insecticide susceptibility, deltamethrin, piperonyl butoxide

Abstract

This study investigated the effect of piperonyl butoxide (PBO) with deltamethrin against field-collected Aedes aegypti from Thung Song district, Nakhon Si Thammarat province and Muang district, Chai Nat province. The World Health Organization (WHO) contact susceptibility test for female adult mosquitoes to 0.03% deltamethrin impregnated papers showed that two field populations of Ae. aegypti had exhibited strong resistance to deltamethrin with 26.67% (Nakhon Si Thammarat) and 3.7% (Chai Nat) mortality. Synergistic efficacy of piperonyl butoxide (PBO) 4% combined with deltamethrin 0.03% against both field populations of insecticide-resistant Ae. aegypti showed an increase in mortality to 38.53% for Nakhon Si Thammarat and 59.26% for Chai Nat mosquitoes. Behavioral responses of a standard deltamethrin-susceptible laboratory strain (Bora Bora) and both field isolates of Ae. aegypti exposed to deltamethrin (0.02 g ai/m2) and deltamethrin (0.02 g ai/m2)+PBO (4%) were tested using an excito-repellency test system. Contact irritancy (excitation) escape responses for Nakhon Si Thammarat and Chai Nat mosquitoes to deltamethrin were 57.6 and 72.9%, respectively, while escape responses to deltamethrin+PBO were 63.3 and 71.7%, respectively. The Bora Bora strain also showed marked contact irritancy to deltamethrin and deltamethrin+PBO, 69.5 and 67.9% escape, respectively. There was no significant difference in escape responses to deltamethrin and deltamethrin+PBO among three different Ae. aegypti groups (log rank test, p>0.05). It was concluded that 4% PBO synergist could help improve the efficacy of deltamethrin against deltamethrin-resistant Ae. aegypti, but did not induce an increase of escape response in Ae. aegypti to deltamethrin.

Downloads

Download data is not yet available.

References

Chuaycharoensuk W, Juntarajumnong T, Boonyuan W, Bangs MJ, Akratanakul P, Thammapalo S, et al. Frequency of pyrethroid resistance in Aedes aegypti and Aedes albopictus (Diptera: culicidae) in Thailand. J Vector Ecol. 2011;36:204-12.

Soderlund DM. Handbook of pesticide toxicology: Chapter 77 - Toxicology and mode of action of pyrethroid insecticides. 3th ed. Elsevier Inc. 2010.

Haddi K, Tomé HVV, Du Y, Valbon WR, Nomura Y, Martins GF, et al. Detection of a new pyrethroid resistance mutation (V410L) in the sodium channel of Aedes aegypti: a potential challenge for mosquito control. Sci Rep. 2017;7:46549. doi: 10.1038/srep46549.

Wananukul W, Sriapha C. Pyrethroids. P&D Information Bulletin. 2007;15(3):27-9.

Kongmee M, Thanispong K, Sathantriphop S, Sukkanon C, Bangs MJ, Chareonviriyaphap T. Enhanced mortality in deltamethrin-resistant Aedes aegypti in Thailand using a piperonyl butoxide synergist. Acta Trop. 2019;189:76-83. doi: 10.1016/j.actatropica.2018.09.025.

World Health Organization (WHO). Dengue guidelines for diagnosis, treatment, prevention and control : new edition. Geneva: World Health Organization;2009.

Boubidi SC, Roiz D, Rossignol M, Benoit R, Raselli M, Tizon C, et al. Efficacy of ULV and thermal aerosols of deltamethrin for control of Aedes albopictus in nice, France. Parasit. Vectors 2016;9:597. doi: 10.1186/s13071-016-1881-y.

Thanispong K, Sathantriphop S, Chareonviriyaphap T. Insecticide resistance of Aedes aegypti and Culex quinquefasciatus in Thailand. J Pestic Sci. 2008;33:351-6.

Sirisopa P, Thanispong K, Chareonviriyaphap T, Juntarajumnong W. Resistance to synthetic pyrethroids in Aedes aegypti (Diptera: culicidae) in Thailand. Kasetsart J (Nat. Sci.) 2014;48:577-86.

Bernard CB, Philogène BJ. Insecticide synergists: role, importance, and perspectives. J Toxicol Environ Health. 1993;38:199-223.

Sangba ML, Deketramete T, Wango SP, Kazanji M, Akogbeto M, Ndiath MO. 2016. Insecticide resistance status of the Anopheles funestus population in Central African Republic: a challenge in the war. Parasit. Vectors 9, 230. https://doi.org/10. 1186/s13071-016-1510-9.

Kweka EJ, Mazigo HD, Mapunda G, Yewhalaw D. Piperonyl butoxide: an enhancing arsenal for an Adomant Foe. J Transm Dis Immun. 2017;1:15.

Kongmee M, Thanispong K, Sathantriphop S, Sukkanon C, Bangs MJ, Chareonviriyaphap T. Enhanced mortality in deltamethrin-resistant Aedes aegypti in Thailand using a piperonyl butoxide synergist. Acta Trop. 2019;189:76-83. doi: 10.1016/j.actatropica.2018.09.025.

Sevana J, Sinakom B, Aumaung B. Efficacy of insecticides for Aedes aegypti control by ultra-low-volume application in semi-field condition. Bull Med Sci. 2020;62(4):343-51.

Kongmee M, Prabaripai A, Akratanakul P, Bangs MJ, Chareonviriyaphap T. Behavioral responses of Aedes aegypti (Diptera: Culicidae) exposed to deltamethrin and possible implications for disease control. J Med Entomol. 2004;41:1055-63.

World Health Organization (WHO). Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Global Malaria Programme, 2nd ed. Geneva: Switzerland; 2016.

Abbott WS. A method for computing the effectiveness of an insecticide. J Am Mosq Control Assoc. 1925;3:302-3.

Matowo J, Kulkarni MA, Mosha FW, Oxborough RM, Kitau JA, Tenu F, et al. Biochemical basis of permethrin resistance in Anopheles arabiensis from Lower Moshi, north-eastern Tanzania. Malar J. 2010;9:193.

Thomas A, Kumar S, Pillai MKK. Piperonyl butoxide as a counter measure for deltamethrin-resistance in Culex quinquefasciatus say. Entomol. 1991;18:1-10.

Chareonviriyaphap T, Bangs MJ, Suwonkerd W, Kongmee M, Corbel V, Ngoen-Klan R. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasites Vectors. 2013;6:280. doi:10.1186/1756-3305-6-280.

Sathantriphop S, Paeporn P, Ya-Umphan P, Mukkhun P, Thanispong K, Chansang C, et al. Behavioral Action of Deltamethrin and Cypermethrin in Pyrethroid-Resistant Aedes aegypti (Diptera: Culicidae): Implications for Control Strategies in Thailand. J Med Entomol. 2020;57(4):1157-67. doi: 10.1093/jme/tjaa019.

Sathantriphop S, Thanispong K, Sanguanpong U, Achee NL, Bangs MJ, Chareonviriyaphap T. Comparative Behavioral Responses of Pyrethroid-Susceptible and -Resistant Aedes aegypti (Diptera: Culicidae) Populations to Citronella and Eucalyptus Oils. J Med Entomol. 2014;51(6):1182-91. doi: 10.1603/ME13191.

Paeporn P, Supaphathom K, Sathantriphop S, Chareonviritaphap T, Yaicharoen R. Behavioural responses of deltamethrin- and permethrin-resistant strains of Aedes aegypti when exposed to permethrin in an excito-repellency test system. Dengue Bull. 2007;31:153-9.

SAS. 2002. SAS software version 9. SAS Institute Inc. Cary, NC. USA.

Thanispong K, Pankeaw K, Sukchote P. Insecticde susceptibility resistance status in Aedes aegypti L. to insecticides. 2013;8(2):28-43. (in Thai)

Kotitip K, Junsupa J, Madang S, Rurangcharoen K, Suwonkerd W. Susceptibility test of Aedes aegypti to Pyrethroid insecticide in 8 Northern provinces of Thailand, 2015-2016. Lanna Public Health J. 2018;14(1):13-22.

Ministry of Public Health (MOPH), Thailand, (2017). Vector Borne Disease Annual Report, 2017. (in Thai)

Bingham G, Field LM, Gunning RV, Delogu G, Borzatta V, Moores GD. Temporal synergism can enhance carbamate and neonicotinoid insecticidal activity against resistant crop pests. Pest Manag Sci. 2008;64:81-5.

Yaicharoen R, Kiatfuengfoo R, Chareonviriyaphap T, Rongnoparut P. Characterization of deltamethrin resistance in field populations of Aedes aegypti in Thailand. J Vector Ecol. 2005;30:144-50.

Corbel V, Stankiewicz M, Bonnet J, Grolleau F, Hougard JM, Lapied B. Synergism between insecticides permethrin and propoxur occurs through activation of presynaptic muscarinic negative feedback of acetylcholine release in the insect central nervous system. Neurotoxicology. 2006;27:508-19.

Tabbabi A, Daaboub J, Cheikh RB, Laamari A, Feriani M, Boubaker C, et al. Resistance status to deltamethrin pyrethroid of Culex pipiens pipiens (Diptera: Culicidae) collected from three districts of Tunisia. Afr Health Sci. 2018;18(4):1182-8. doi: 10.4314/ahs.v18i4.39.

Kongmee M, Boonyuan W, Achee NL, Prabaripai A, Lerdthusnee K, Chareonviriyaphap T. Irritant and repellent responses of Anopheles harrisoni and Anopheles minimus upon exposure to bifenthrin or deltamethrin using an excito-repellency system and a live host. J Am Mosq Control Assoc. 2012;28:20-9. doi:10.2987/11-6197.1

Kakko I, Toimela T, Tähti H. Piperonyl butoxide potentiates the synaptosome ATPase inhibiting effect of pyrethrin. Chemosphere. 2000;40:301-5.

Bureau of Vector-Borne Diseases. Annual Report 2017. Nonthaburi: Bureau of Vector-Borne Diseases;2017. (in Thai)

World Health Organization (WHO). Conditions for deployment of mosquito nets treated with a pyrethroid and piperonyl butoxide. Geneva: World Health Organization;

Downloads

Published

2021-09-29

How to Cite

1.
Paeporn P, Sathantriphop S, Thanispong K, Ya-umphan P, Mukkhun P. Synergistic effect of combination deltamethrin and piperonyl butoxide on behavioral avoidance and mortality responses of Aedes aegypti L. Dis Control J [Internet]. 2021 Sep. 29 [cited 2024 Dec. 19];47(Suppl 1):788-803. Available from: https://he01.tci-thaijo.org/index.php/DCJ/article/view/246090