

Original article

Prospective outcomes of single incision laparoscopic cholecystectomy compared to conventional laparoscopic cholecystectomy; an initial experience

Sahatham Saminthaрапanya, M.D.

Department of Surgery, Lampang Hospital, Ministry of Public Health

Abstract

Background Single incision laparoscopic cholecystectomy (SILC) has been challenged as an alternative technique to the gold standard conventional (3 or 4 port) laparoscopic cholecystectomy (LC).

Method In a prospective study from March to December 2012, 21 patients with indication of cholecystectomy were randomized into a SILC (n=10) or LC (n=11) group. The primary outcomes were cosmetic result and post operative pain. The secondary outcomes were complications, length of hospital stay (LOS) conversion rate and operative time.

Results Patient characteristics were no different between groups, except for body mass index (BMI), which was lower in the SILC group (mean \pm SD 20.2 \pm 2.5 vs 25.4 \pm 3.9 kg/m 2 , $p < 0.01$). The SILC group had a higher cosmetic score (mean \pm SD 9.7 \pm 0.5 vs 7.5 \pm 1.1, $p < 0.01$) and longer operative time (mean \pm SD 84 \pm 19.9 vs 55 \pm 11.2 min, $p < 0.01$), but was equal in visual analog pain score (VAS) (mean \pm SD 3.7 \pm 1.6 vs 4.1 \pm 1.4, $p = 0.54$), opiate used on day 1 (30% vs 45%, $p = 0.66$), LOS (mean \pm SD 2.1 \pm 0.3 vs 2.2 \pm 0.6 day, $p = 0.70$), post operative complication rate (10.0% vs 18.2%, $p = 1.00$) and no conversion rate at all.

Conclusion SILC is a safe procedure with better cosmetic results. **Chiang Mai Medical Journal** 2014;53(2):81-87.

Keywords: single incision laparoscopic cholecystectomy (SILC), conventional laparoscopic cholecystectomy (LC), cosmetic score, visual analog score (VAS), post operative complication, operative time

Background

Laparoscopic cholecystectomy (LC) was introduced in order to maximize satisfaction in terms of body image or cosmetic result, and

improve clinical outcomes such as reduced post operative pain, shorter length of hospital stay and return to normal activity.

Address correspondence to: Sahatham Saminthaрапanya, M.D. Department of Surgery, Lampang Hospital, Lampang 52000, Thailand. E-mail: sahatham123@gmail.com

Received June 1, 2013, and in revised form November 13, 2013.

Since Navarra *et al*^[1] reported that laparoscopic cholecystectomy through single umbilical incision may be feasible technically, and could have advantages in certain patients, single incision laparoscopic cholecystectomy (SILC) is one of the most popular techniques performed today.

One abdominal incision instead of the conventional 3 or 4 is expected to improve clinical outcome. However, the major disadvantage of this technique is operational difficulty because it is hard to grasp or dissect the gallbladder from one incision (fighting instrument).

There is very little prospective data on SILC replacing LC as a standard treatment. Although SILC is performed worldwide, it is new to the institute of this study. Therefore, this study aimed to compare the results of this technique to the conventional one in many ways, in order to apply them for use as a standard practice.

Method

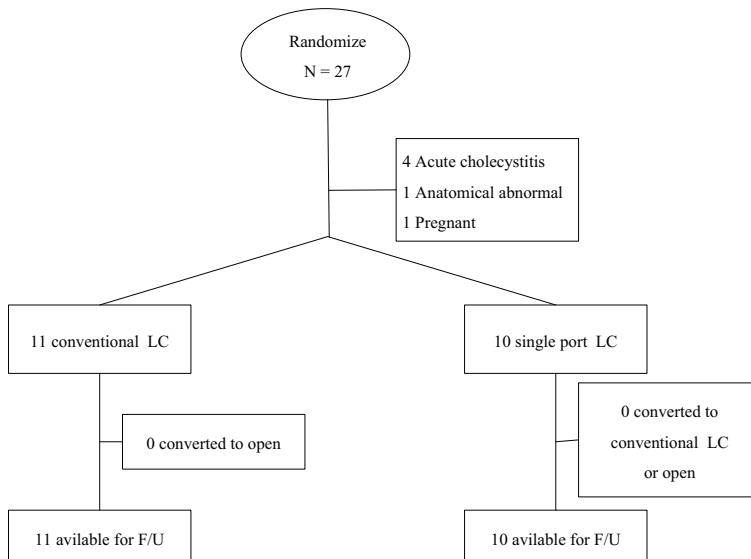
This study was a prospective randomized control trial in gallbladder disease patients, who needed an operation by laparoscopic cholecystectomy in Lampang Hospital between March and December 2012.

Primary outcomes of cosmetic results and post operative pain were compared between LC and SILC techniques. Secondary outcomes were safety and applicable in terms of complication, length of hospital stay and operative time.

Patient selection

Patients in Lampang Hospital, with indication of LC, were 20 to 80 years old. Pre operative imaging was carried out by abdominal ultrasound or CT scan. Patients diagnosed clinically or by imaging with acute cholecystitis were excluded from the study. Those needing exploration of the common bile duct and those diagnosed by pre operative imaging as suspected abnormal anatomy of the biliary tract, as well as pregnant women, also were excluded.

Patients were randomized for conventional LC of the 3rd or 4th port arm and single port arm (Figure 1). Prophylactic antibiotics were used in all cases. Nasogastric intubation was performed, with voiding to empty the bladder before operating.


Post operative pain was controlled by paracetamol at 1,000 mg orally, or pethidine intravenously on demand if the pain score was ≥ 4 .

Surgical technique and instruments

Trocar in the conventional group was placed using the open technique at the subumbilical and epigastric region, and one or two trocar were placed subsequently at the right subcostal region (in mostly the 3rd port, with the additional 4th port being preserved for more complicated cases).

The same open technique was used in the single port group, placing trocar at the subumbilical region, but using the Single Incision Laparoscopic Surgery Port (SILS port, Covidien® company, Figure 2).

Both groups were given standard operations using usual instruments until the gallbladder was removed from the abdomen. Closed suction drainage was placed in cases when bleeding might not stop completely. The abdominal sheet, subcutaneous tissue and skin were closed by absorbable material.

Figure 1. flow of randomized control trial.

Figure 2. Single incision laparoscopic surgery (SILS) port (Covidien® company).

Data collection

General information was collected, including sex, age, body mass index (BMI), indication for surgery, American Society of Anesthesiologist classifications (ASA), and intraoperative findings such as intraabdominal adhesion.

Operative time started from the first skin incision to the last skin closure. Cosmetic score^[2-3] was rated at follow up visits about 2 weeks post operation by the patients' own ranking from 1 (worst) to 10 (best).

Pain score, using the visual analog score (VAS) between 0 (no pain) to 10 (maximum pain), was evaluated by the patients at 24 hrs post operation. All complication data were collected from the first day post operation until the last day of follow up (2 weeks later). The first day post operation to discharge from hospital also was counted as post operative length of stay (LOS). Conversion to the open technique in both groups or an additional port in the SILC group was collected and counted as "conversion" cases.

Statistical analysis

Sample size calculation, performed by the difference of cosmetic results, ensured a power of 80% and alpha level of less than 0.05 in one arm of 10 randomized patients. Data were analyzed using the STATA program version 11.0 in terms of mean \pm SD, range, and percentage calculated by comparing the t-test to Fisher exact probability test, with $p < 0.05$ being significant.

Results

From a total of 27 patients, who had an LC operation, 6 were excluded due to acute cholecystitis (n=4), abnormality in pre operative anatomy (suspected portal varices) (n=1) and pregnancy (Figure 1).

Indications of gallbladder removal are shown in Table 1, including 90% symptomatic gallstones and 10% gallbladder polyp in the conventional group, and 80% symptomatic gallstones and 20% gallbladder polyp in the SILC group ($p = 0.72$).

General characteristics and intraoperative findings were similar in age (mean 48.2 vs 50.5, $p = 0.70$), sex (54.5% M vs 40% M, $p = 0.6$), ASA class (27.3% vs 70% class 1, $p = 0.08$), and intraabdominal adhesion (18.1% vs 40%, $p = 0.36$).

The only significant statistic was body mass index (BMI), which was higher in the conventional group (mean \pm SD 25.4 ± 3.9 kg/m 2 vs 20.2 ± 2.5 kg/m 2 , $p < 0.01$).

A photograph on day 14 post operation is shown in Figure 3. The SILC group had a higher cosmetic score than the conventional one (mean \pm SD 9.7 ± 0.5 vs 7.5 ± 1.1 , $p < 0.01$), but it took a longer operation time (mean \pm SD 84 ± 19.9 min vs 55 ± 11.2 min, $p < 0.01$). However, there was no difference in post operative pain (opiate use on day 1, 30% vs 45%, $p = 0.66$ and 24 hrs. VAS score 3.7 ± 1.6 vs 4.1 ± 1.4 , $p = 0.54$). No conversion rate was found at all. The length of hospital stay (LOS) was similar in both groups (mean \pm SD 2.1 ± 0.3 day vs 2.2 ± 0.6 day, $p = 0.70$). Post operation complication was not significantly different ($p = 1.00$). Mild post operative complication was found in 2 cases (18.2%) with prolonged ileus and urinary retention in the conventional LC group, while only 1 case (10.0%) in the SILC group had prolonged ileus, but all of

Figure 3. Postoperative image on day 14.

Table 1. Patient characteristics and indications for surgery

	Standard LC (n=11)	Single port LC (n=11)	p
Indications for surgery			
Symptomatic gallstone (%)	10 (90.0)	8 (80.0)	0.72
Gallbladder polyp (%)	1 (10.0)	2 (20.0)	
General characteristics			
AGE (year)	48.2±12.7 (24-64)	50.5±13.7 (34-75)	0.70
SEX (M : F) (%)	(6 : 5) (54.5 : 45.5)	(4 : 6) (40 : 60)	
BMI [(BW (kg)/Ht(m ²)]	25.4±3.9 (20.9-34.5)	20.2±2.5 (16.5-24.3)	< 0.01
ASA class (I : other) (%)	3 : 8 (27.3 : 72.7)	(7 : 3) (70 : 30)	0.08
Marked adhesion* (yes : no) (%)	2:9 (18.1 : 81.9)	(4 : 6) (40 : 60)	0.36

Age, BMI: mean ± SD. (range)

*marked adhesion = adhesion at the port site or around the gallbladder needed more time to lysis

Table 2. Clinical results

	Convention LC	Single LC	p
Cosmetic score (1 worst, 10 best)	7.5±1.1 (6-9)	9.7±0.5 (9-10)	<0.01
Opiate use on day 1 (%)	5 (45.5)	3 (30.0)	0.66
VAS 24 hr. (0-10)	4.1±1.4 (2-6)	3.7±1.6 (1-7)	0.54
Operative time (min)	55±11.2 (35-80)	84±19.9 (60-110)	<0.01
Conversion n (%)	0(0)	0(0)	N/A*
LOS (day)	2.2±0.6 (2-4)	2.1±0.3 (2-3)	0.70
Postoperative complication (%)	2 (18.2)	1(10.0)	1.00

Cosmetic score, VAS, operative time, LOS: mean ± SD. (range), VAS: pain visual analog score

LOS: length of stay post operation, *not applicable

them improved and could tolerate the condition when discharged from hospital.

Discussion

Published meta analysis data^[4-9] of SILC versus conventional LC mostly compared clinical benefit and safety between the two operations. This was a prospective study that confirmed previous ones in many ways.

Patients in this study were no different in each group, except for lower BMI in the SILC group. Reibetana *et al*^[10] reviewed 100 SILC patients and compared them between 17% obese patients (median BMI 33.9 kg/m²) and 83% normal

weight patients (median BMI 24.1 kg/m²), and found no difference in operative time, conversion rate, postoperative complication or length of stay. They concluded that BMI should not be considered a key criterion in the SILC patients selected. In accordance with the Reibetana^[10] study, the BMI in both groups of this study were categorized into normal weight patients. Despite using the randomized technique, more cases are required if BMI is used in selecting patients.

This study showed better cosmetic results in the SILC group, which was the same as in most metaanalysis^[7-9] and randomized studies^[2,11-14]. Studies by Ma *et al*^[15] showed no difference in

cosmetic satisfaction between groups (total of 43 patients). In this study, an explanation for its results may be that most of the SILC group had never before had a single incision in any operation, and therefore the cosmetic score may be overestimated.

Early post operative pain was similar in both groups, which resembled results of most other studies^[2,6-8,13-17]. However, some randomized studies had different results; for example, Tsimoyiannis *et al*^[18] and Wong *et al*^[19] found less pain in the SILC group, which was in contrast to Mehmmood *et al*^[20], who reported more pain in the SILC group. The possible reason for higher postoperative pain in the SILC group might be explained by longer umbilical incision length, longer operation time, more “traction”, more tissue trauma and cases of early learning.

Longer operation time in the SILC group was a significant result, as it was the same as most others^[6-9,12-16,20]. Some studies^[2,11] reported no difference between groups however, and learning curve and skills affected the range. Previous studies reported that operation time improved significantly in approximately 5,^[21] 8,^[22,23] 10,^[24] and 20^[25] cases. There are many ways of suggesting how to reduced SILC operation time such as the sutured hanging gallbladder technique or curved instrument, but there is currently no standard technique. More cases to gain experience and newer reported techniques may be adapted in order to improve operative time.

Safety procedure evaluated by complications, LOS and conversion rate was similar in both groups and most previous studies^[2,6,8-9,11-13,15-17]. Some studies^[7,14,20] reported wound complications or longer LOS in the SILC group. A biliary complication rate of 0.7%^[4,26] in the SILC group (0.2-0.5%^[27] in conventional LC) is a major concern. Total major complications requiring intervention or readmission occurred in 2.7% of the SILC group^[28]. Therefore, many opinions suggest that it is too early to conclude SILC as a safe procedure. Large randomized controlled trials are necessary in order to confirm a safe procedure.

In conclusion, SILC in Lampang Hospital was found initially to be a safe procedure, with better cosmetic results, and no inferiority to conventional LC in postoperative pain and LOS. However, the operation time was longer.

Application and further suggestion

From this study, SILC is suitable for patients with cosmetic concerns. However, more cases are required for further study regarding complications.

References

1. **Navarra G, Pozza E, Occhionorelli S, et al.** One-wound laparoscopic cholecystectomy. *Br J Surg* 1997; 84:695.
2. **Lai EC, Yang GP, Tang CN, Chan OC, Li MK.** Prospective randomized comparative study of single incision laparoscopic cholecystectomy versus conventional four-port laparoscopic cholecystectomy. *The Am J of Surg* 2011;202:254-8.
3. **Zheng M, Qin M, Zhao H.** Laparoendoscopic single-site cholecystectomy: a randomized controlled study. *Minim Invasive Ther Allied Technol* 2011;21:113-7.
4. **Allemann P, Schafer M, Demartines N.** Critical appraisal of single port access cholecystectomy. *Br J Surg* 2010;97:1476-81.
5. **Antoniou SA, Pointner R, Granderath FA.** Single-incision laparoscopic cholecystectomy *Br J Surg* 2010; 97:1476-81.
6. **Makar SR, Karthikesalingam A, Thrumurthy S, et al.** Single-incision laparoscopic surgery (SILS) vs conventional multiport cholecystectomy: systematic review and meta-analysis. *Surg Endosc* 2012;26:1205-13.
7. **Garg P, Thakur JD, Garg M, Menon GR.** Single-incision laparoscopic cholecystectomy vs conventional laparoscopic cholecystectomy: a meta-analysis of randomized controlled trials. *J Gastrointest Surg* 2012;16: 1618-28.
8. **Trastulli S, Cirocchi R, Desiderio J, et al.** Systematic review and incision versus conventional laparoscopic cholecystectomy. *Br J Surg* 2013;100(2):191-208.
9. **Ha OL, Liu M, Li Z.** Single-incision versus conventional laparoscopic cholecystectomy in patients with uncomplicated gallbladder disease: a meta analysis. *Surg Laparosc Endosc Percutan Tech* 2012;22(6):487-97.
10. **Reibetanz J, Germer CT, Krdjinovic K.** Single-port cholecystectomy in obese patients: our experience and a review of the literature. *Surg Today* 2013;43(3):255-9.
11. **Pan MX, Jiang ZS, Cheng Y, et al.** Single-incision vs three-port laparoscopic cholecystectomy: Prospective randomized study. *World J Gastroenterol* 2013;19:394-8.

12. **Jung GO, Park DF, Chae KM.** Clinical results between single incision laparoscopic cholecystectomy and conventional 3-port laparoscopic cholecystectomy: prospective case-matched analysis in single institution. *J Korean Surg Soc* 2012;83:374-80.
13. **Lee PC, Lo C, Lai PS, et al.** Randomized Clinical trial of single-incision laparoscopic cholecystectomy versus minilaparoscopic cholecystectomy. *Br J Surg* 2010;97:1007-12.
14. **Phillips MS, Marks JM, Robert K, et al.** Intermediate results of a prospective randomized controlled trial of traditional four-port laparoscopic cholecystectomy versus single-incision laparoscopic cholecystectomy. *Surg Endosc* 2012;26:1296-303.
15. **Ma J, Cassera MA, Spaun GO, et al.** Randomized controlled trial comparing single-port laparoscopic cholecystectomy and four-port laparoscopic cholecystectomy. *Ann Surg* 2011;254:22-7.
16. **Sinan H, Demirbas S, Ozer MT, Sucullu I, Akyol M.** Single-incision laparoscopic cholecystectomy versus laparoscopic cholecystectomy: a prospective randomized study. *Surg Laparosc Endosc Percutan Tech* 2012;22:12-16.
17. **Cao ZG, Cai W, Qin MF, et al.** Randomized clinical trial of single-incision versus conventional laparoscopic cholecystectomy: short-term operative outcomes. *Surg Laparosc Endosc Percutan Tech* 2011;21:311-3.
18. **Tsimogiannis EC, Tsimogiannis KE, Pappa-Gogos G, et al.** Different pain scores in single transumbilical incision laparoscopic cholecystectomy: a randomized controlled trial. *Surg Endosc* 2012;24:1842-8.
19. **Wong JS, Cheug YS, Fong KW, et al.** Comparison of postoperative pain between single-incision laparoscopic cholecystectomy and conventional laparoscopic cholecystectomy: prospective case-control study. *Surg Laparosc Endosc Percutan Tech* 2012;22(1):25-8.
20. **Mehmood Z, Subhan A, Ali N, et al.** Four port versus single incision Laparoscopic cholecystectomy. *Journal of Surgery Pakistan (International)* 2010;15:122-5.
21. **Kravetz AJ, Iddings D, Basson MD, et al.** The learning curve with single-port cholecystectomy. *JSLS* 2009; 13:332-6.
22. **Steinemann D, Limani P, Calvien PA, et al.** Internal retraction in single-port laparoscopic cholecystectomy: Initial experience and learning curve. *Minim Invasive Ther Allied Technol* 2012;(4):1-6.
23. **Han HJ, Choi SB, Park MS, et al.** Learning curve of single port laparoscopic cholecystectomy determined using the non-linear ordinary least squares method based on a non-linear regression model: An analysis of 150 consecutive patients. *J Hepatobiliary Pancreat Sci* 2011;18(4):510-5.
24. **Solomon D, Bell RL, Duffy AJ, et al.** Single-post cholecystectomy: small scar, short learning curve. *Surg Endosc* 2010;24(12):2954-7.
25. **Qui Z, Sun J, Pu Y, et al.** Learning curve of transumbilical single incision laparoscopic cholecystectomy (SILC): a preliminary study of 80 selected patients with benign gallbladder diseases. *World J Surg* 2011; 35:2092-101.
26. **Joseph M, Phillips MR, Farrell TM, et al.** Single incision laparoscopic cholecystectomy in associated with higher bile duct injury rate: a review and word of caution. *Ann Surg* 2012;256(1):1-6.
27. **Nuzzo G, Guilianle F, Giovanni I, et al.** Bile duct injury during laparoscopic cholecystectomy: results of an Italian national survey on 56,591 cholecystectomies. *Arch Surg* 2005;140:986-92.
28. **Sofie F, Stassen L, Bouvy N.** Single incision laparoscopic cholecystectomy: a review on the complication. *J Minim Access Surg* 2012;8(1):1-5.

ผลของการศึกษาแบบไปข้างหน้าของการผ่าตัดถุงน้ำดีผ่านกล้องและแพลผ่าตัดเดียวเทียบกับการผ่าตัดถุงน้ำดีผ่านกล้องแบบดั้งเดิม; ประสบการณ์เริ่มแรก

สหธรรม สวนทรัพย์ญา, พ.บ.

กลุ่มงานศัลยกรรม โรงพยาบาลลำปาง จังหวัดลำปาง

ความเป็นมา การผ่าตัดถุงน้ำดีผ่านกล้องแบบแพลผ่าตัดเดียว กำลังท้าทายให้เป็นทางเลือกทดแทนการผ่าตัดถุงน้ำดีผ่านกล้องแบบดั้งเดิม (3-4 แพล)

วิธีการศึกษา เป็นการศึกษาแบบไปข้างหน้าในผู้ป่วยที่มีข้อบ่งชี้การผ่าตัดนิ่วในถุงน้ำดีรวม 21 ราย ระหว่างเดือนมีนาคม 2555 ถึงเดือนธันวาคม 2555 โดยแบ่งเป็น 2 กลุ่มอย่างสุ่มคือ กลุ่มแพลผ่าตัดเดียวจำนวน 10 ราย และกลุ่มผ่าตัดแบบดั้งเดิมจำนวน 11 ราย ประเมินผลการศึกษาหลักคือ ความพึงพอใจในความสวยงามของแพลผ่าตัดและความเจ็บปวดหลังการผ่าตัด ประเมินผลการศึกษารอง คือภาวะแทรกซ้อนหลังผ่าตัดจำนวนวันนอนโรงพยาบาล การเปลี่ยนวิธีการผ่าตัดและระยะเวลาการผ่าตัด

ผลการศึกษา ไม่มีความแตกต่างในลักษณะทั่วไประหว่างกลุ่ม ยกเว้นดัชนีมวลกาย ซึ่งในกลุ่มแพลผ่าตัดเดียวพบว่าต่ำกว่าอย่างมีนัยสำคัญ (เฉลี่ย \pm ค่าเบี่ยงเบน 20.2 ± 2.5 เทียบกับ 25.4 ± 3.9 กิโลกรัม/ตารางเมตร, $p < 0.01$) พบว่าในกลุ่มแพลผ่าตัดเดียวมีค่าคะแนนความสวยงามแพลผ่าตัดมากกว่าอย่างมีนัยสำคัญ (เฉลี่ย \pm ค่าเบี่ยงเบน 9.7 ± 0.5 เทียบกับ 7.5 ± 1.1 , $p < 0.01$) ระยะเวลาการผ่าตัดนานกว่าอย่างมีนัยสำคัญ (เฉลี่ย \pm ค่าเบี่ยงเบน 84 ± 19.9 เทียบกับ 55 ± 11.2 นาที, $p < 0.01$) แต่ไม่มีความแตกต่างกันในเรื่องคะแนนความเจ็บปวดหลังผ่าตัด (เฉลี่ย \pm ค่าเบี่ยงเบน 3.7 ± 1.6 เทียบกับ 4.1 ± 1.4 , $p = 0.54$) การใช้ยาบรรจับความเจ็บปวดชนิดโอลิโธในวันแรก (ร้อยละ 30 เทียบกับร้อยละ 45, $p = 0.66$), จำนวนวันนอนโรงพยาบาล (เฉลี่ย \pm ค่าเบี่ยงเบน 2.1 ± 0.3 เทียบกับ 2.2 ± 0.6 วัน, $p = 0.70$) ภาวะแทรกซ้อนหลังผ่าตัด (ร้อยละ 10 เทียบกับ ร้อยละ 18.2, $p = 1.00$) โดยไม่พบว่ามีการเปลี่ยนวิธีการผ่าตัดเดลย์ทั้งสองกลุ่ม

สรุปผลการศึกษา การผ่าตัดถุงน้ำดีผ่านกล้องแบบแพลผ่าตัดเดียว เป็นการผ่าตัดที่ปลอดภัยโดยมีผลเด่นในเรื่องความสวยงามของแพลผ่าตัด เชียงใหม่เวชสาร 2557;53(2):81-87.

คำสำคัญ: การผ่าตัดถุงน้ำดีผ่านกล้องแบบแพลผ่าตัดเดียว การผ่าตัดถุงน้ำดีผ่านกล้องแบบดั้งเดิม ค่าคะแนนความสวยงามแพลผ่าตัด ค่าคะแนนความเจ็บปวด ภาวะแทรกซ้อนหลังผ่าตัด ระยะเวลาการผ่าตัด

