

ORIGINAL ARTICLE

Prevalence and associated factors of non-uptake of human immunodeficiency virus testing of tuberculosis patients in Thailand

Supa Pengpid^{1,3} and Karl Peltzer^{2,4,5}

¹ Dr.PH.ASEAN Institute for Health Development, Mahidol University, Salaya, Phutthamonthon, Nakhonpathom, Thailand, 73170

² Ph.D. ASEAN Institute for Health Development, Mahidol University, Salaya, Phutthamonthon, Nakhonpathom, Thailand, 73170

³ Dr.PH.Department of Research Innovation and Development, University of Limpopo, Turfloop Campus, Sovenga 0727, South Africa

⁴ Ph.D.Department of Psychology, University of Limpopo, Turfloop Campus, Sovenga 0727, South Africa

⁵ Ph.D.HIV/AIDS/STIs and TB (HAST), Human Sciences Research Council, Private Bag X41, Pretoria 0001, South Africa

Corresponding author: Prof. Karl Peltzer Email: karl.pel@mahidol.ac.th

Received: 6 May 2015 Revised: 6 July 2015 Accepted: 7 July 2015

Available online: July 2015

Abstract

Supa Pengpid and Karl Peltzer

Prevalence and associated factors of non-uptake of human immunodeficiency virus testing of tuberculosis patients in Thailand

J Pub Health Dev.2015;13(1)29-36

The aim of this study is to assess the prevalence and associated factors of non-uptake of human immunodeficiency virus (HIV) testing by tuberculosis hospital patients in Thailand. In 2014, a cross-sectional survey was conducted among 425 tuberculosis (TB) patients from 42 public hospitals (21 provincial and 21 district hospitals), in 21 provinces, from all four regions in Thailand. All new TB and new retreatment patients were interviewed within one month of anti-tuberculosis treatment. The outcome was self-reported HIV testing after TB diagnosis.

Results indicated that 38.4% of the 425 participants had not undergone HIV testing. Multiple logistic regression found that 61 years and older and being a Thai national were significantly associated with "Not tested for HIV", while other socio-demographic factors, residential status, TB diagnosis characteristics, TB treatment status, TB knowledge, substance use and TB-AIDS stigma were not significantly associated with "Not tested for HIV". In conclusion, the level of HIV testing among TB hospital patients was suboptimal, and the Ministry of Public Health should continue to scale-up HIV testing and other collaborative TB-HIV services at health facilities.

Keywords: HIV testing, tuberculosis patients, Thailand

Introduction

Thailand is one of the "high-burden" tuberculosis (TB) and high TB/HIV burden countries.^{1,2} It is estimated that the TB burden is even higher among migrants in Thailand.³ HIV-positive TB patients are estimated to be 15% in 2013 in Thailand.² Mortality for cases of TB-HIV co-infection was about 13%, which was about double the mortality of TB cases without HIV infection.⁴ HIV testing among TB patients provides access to the package of HIV treatment and care.⁵ The World Health Organization⁵ has recommended routine HIV counselling and testing of all TB suspects. Thailand has promoted provider-initiated HIV testing and counselling (PITC) for TB patients as part of the national implementation guidelines with a target to test all registered TB patients for HIV.^{4,6} TB patients with known HIV status was 83% in 2013 in Thailand.² Using patient record data in an earlier study in Thailand, 70.1% of TB patients had received HIV testing.⁷

As reviewed in Peltzer et al.⁸ various patient-level factors have been found to be associated with TB patients' non-uptake of HIV testing, including male sex, older age, lower education, employment status, TB treatment status, HIV risk behaviour, fear of stigmatization, and fears of testing HIV-positive. In addition, based on a previous surveillance study in Thailand, associated factors with not receiving HIV testing included having a non-Thai nationality, living in a non-urban area, lack of TB knowledge and attending a large government or non governmental health facility.⁷

Information about the status of implementation of collaborative TB/HIV activities to identify HIV positives among TB patients in Thailand is limited to

patient record data. Therefore, the aim of this study was to assess HIV case finding among TB patients at public health facilities in Thailand by interviewing TB patients during their TB treatment. The findings are hoped to provide feasible recommendations for policy makers and implementers of TB/HIV care in Thailand. Research objectives included, (1) To determine the proportion of TB patients who were tested for HIV during anti-TB treatment follow-ups in 42 public provincial and district hospitals across Thailand, and (2) To assess factors associated with non-uptake of HIV testing of tuberculosis patients.

Methods

Sample and procedure

TB out-patients were interviewed as they were visiting the TB clinic at a public provincial or district hospital. The target was to recruit 15 Thai TB patients for each of 28 public hospitals (14 provincial and 14 district hospitals) and 5 TB migrant patients for each hospital of 14 public hospitals (7 provincial and 7 district hospitals). Two public hospitals (one provincial and one district hospital) were purposefully selected per province in 21 provinces (out of 67 public provincial or district hospitals in Thailand) from all four regions in Thailand. A health care provider identified a new TB treatment or retreatment patient (within one month of treatment, and 18 years and above) informed the patient about the study and referred the patient for participation if interested. A research assistant asked for permission/consent from patients attending the health facility to participate in the study. All new TB and new retreatment patients were interviewed within one month of anti-tuberculosis treatment. The interview was conducted by trained

research assistants. Ethical approval was granted from the Research Ethics Committee of Faculty of Social Sciences and Humanities, Mahidol University (COA No: 2014/222.1308) and the Ministry of Public of Health Thailand also provided approval for this study.

Measure

Socioeconomic characteristics included age, gender, educational level, marital status, income, employment status, and residential status.

HIV testing history was asked with the question, "Have you ever had an HIV test?" If the response was affirmative, the patient was asked, "How long ago have had your most recent HIV test?"⁸

TB treatment status and HIV status were assessed by self-report and where possible from medical information.⁸ TB knowledge and how TB was diagnosed was also assessed.⁹ *Stigma in relation to TB and HIV/AIDS* was assessed with a validated scale in Thailand.¹⁰ Cronbach alpha for this scale was 0.78 in this study.

Alcohol consumption was assessed with one item on the frequency of alcohol use.¹¹

Tobacco use was assessed with the question, "Do you currently use one or more of the following tobacco products (cigarettes, snuff, chewing tobacco, cigars, etc.)?" Response options were "yes" or "no".¹²

Data analysis

All statistical analyses are carried out using IBM (International Business Machines Corporation) SPSS (Statistical Package for the Social Sciences) version 22. Frequencies, means, and standard deviations, were calculated to describe the sample. Chi-square and independent t-tests were used to identify significant differences between TB patients who had and who had not tested for HIV across the categorical and continuous study variables. Multiple logistic regression with forced "entry" was used to identify associations between independent variables such as sociodemographic and health status variables and dependent variable (not having tested for HIV). P-value of <0.05 was considered significant.

Results

Sample characteristics

Of the total sample (N=473) included in the study 3 refused to participate and 45 had incomplete data, so the final sample included 425, 70.1% men and 29.9% women, with a mean age of 47.9 years (SD=16.0), range 18 to 88 years. Almost two-thirds of the participants (66.7%) were 41 years and older, the majority (91.8%) were Thai, and 34.7% had completed secondary education. Regarding TB diagnosis, 81.3% were diagnosed when they were sick, 11.3% were TB retreatment cases and few (3.8%) believed that TB cannot be cured. Participants' characteristics stratified by HIV test uptake are presented in Table 1. Almost four in ten (38.4%) of the 425 participants had not undergone HIV testing. Of those who got tested for HIV about 85% got tested within the past year.

Table 1: Characteristics of TB patients

	Total n (%)	Tested for HIV n (%)	Not tested for HIV n (%)	χ^2 P-value
All	(n=425)	262 (61.6)	163 (38.4)	
Age in years	(n=423)			
18-40	141 (33.3)	102 (72.3)	39 (27.7)	<0.001
41-60	187 (44.2)	120 (64.2)	67 (35.8)	
61 or more	95 (22.5)	39 (41.1)	56 (58.9)	
Gender	(n=425)			
Female	127 (29.9)	87 (68.5)	40 (31.5)	0.058
Male	298 (70.1)	175 (58.7)	123 (41.3)	
Nationality	(n=425)			
Thai	390 (91.8)	232 (59.5)	158 (40.5)	0.002
Migrants ¹	35 (8.2)	30 (85.7)	5 (14.3)	
Education	(n=424)			
None	42 (9.9)	27 (64.3)	15 (35.7)	0.001
Primary	235 (55.4)	127 (54.0)	108 (46.0)	
Secondary or more	147 (34.7)	108 (73.5)	39 (26.2)	
Residence	(n=425)			
Urban	212 (49.9)	127 (59.9)	85 (40.1)	0.461
Rural	213 (50.1)	135 (63.4)	78 (36.6)	
How TB was diagnosed	(n=402)			
Community screening	20 (5.0)	14 (70.0)	6 (30.0)	0.223
Sick	327 (81.3)	201 (61.5)	126 (38.5)	
By chance when checking other diseases	55 (13.7)	28 (50.9)	27 (49.0)	
TB treatment status	(n=425)			
New TB	377 (88.7)	230 (61.0)	147 (39.0)	0.448
Retreatment	48 (11.3)	32 (66.7)	16 (33.3)	
Substance use	(n=425)			
Current tobacco use	68 (16.0) (n=417)	44 (64.7)	24 (35.3)	0.571
Past week alcohol use	36 (8.6) (n=418)	20 (55.6)	16 (44.4)	0.433
TB cannot be cured	16 (3.8)	7 (43.8)	9 (56.3)	0.132
				t-test P-value
TB-AIDS stigma (scale)	11.2 (4.3)	11.0 (4.1)	11.3 (4.5)	0.506

¹ from Myanmar, Cambodia and Lao PDR

Associations with not testing for HIV

Multivariate analysis found 61 years and older and being a Thai was significantly associated with “Not tested for HIV”, while other socio-demographic

factors, residential status, TB diagnosis characteristics, TB treatment status, TB knowledge, substance use and TB-AIDS stigma were not significantly associated with “Not tested for HIV” (see Table 2).

Table 2: Predictors of non-uptake of HIV testing of TB patients in Thailand

Variable	Crude OR (95% CI)	P-value	Adjusted OR (95% CI) ^{a,b}	P-value
Age in years				
18-40	1.00		1.00	0.876
41-60	1.46 (0.91-2.35)	0.118	1.05 (0.59-1.85)	0.015
61 or more	3.76 (2.17-6.51)	<0.001	2.41 (1.19-4.86)	
Gender				
Female	1.00		1.00	
Male	1.53 (0.99-2.37)	0.059	1.34 (0.80-2.24)	0.266
Nationality				
Migrants	1.00		1.00	
Thai	4.09 (1.55-10.76)	0.004	4.42 (1.44-13.56)	0.009
Education				
None	1.00		1.00	
Primary	1.53 (0.77-3.03)	0.221	0.84 (0.35-2.03)	0.698
Secondary or more	0.65 (0.31-1.36)	0.247	0.44 (0.16-1.20)	0.111
Residence				
Urban	1.00		1.00	
Rural	1.16 (0.78-1.71)	0.461	1.38 (0.88-2.17)	0.159
How TB was diagnosed				
Community screening	1.00		1.00	
Sick	1.46 (0.55-3.91)	0.448	1.43 (0.48-4.31)	0.525
By chance when checking other diseases	2.25 (0.75-6.71)	0.146	1.97 (0.58-6.68)	0.279
TB treatment status				
New TB	1.00		1.00	
Retreatment	0.78 (0.42-1.48)	0.448	1.11 (0.47-2.62)	0.809
Substance use				
Current tobacco use	0.86 (0.50-1.47)	0.572	0.76 (0.40-1.41)	0.381
Past week alcohol use	1.32 (0.66-2.62)	0.434	1.63 (0.73-3.63)	0.233
TB-AIDS stigma (scale)	1.06 (0.93-1.21)	0.506	1.01 (0.96-1.07)	0.645
TB cannot be cured	2.14 (0.78-5.86)	0.140	2.60 (0.69-9.83)	0.160

^a Using “enter” LR selection of variables

^b Hosmer and Lemeshow goodness of fit Chi-square 11.63, df 8, 0.168; Cox and Snell R² 0.11; Nagelkerke R² 0.15

Discussion

The study found in a national sample of tuberculosis public health care patients that 38.4% had not tested for HIV within one month of TB treatment. This rate seems to be worse than in previous surveillance data in Thailand^{2, 7} and patient report data in South Africa.^{8, 13} Therefore, there is a need to improved uptake of HIV testing among TB public health care patients in Thailand.

In multivariate analysis, 61 years and older and being a Thai were significantly associated with “Not tested for HIV”. Older age was also found to be associated with non-uptake of HIV testing in other studies.¹⁴ The finding of better HIV testing uptake among migrants than among Thais seems contrary to a previous study⁷ but seems to show improved HIV testing rates among migrant TB patients. More emphasis may need to be placed on increasing access to HIV testing of Thai TB patients. Unlike some previous studies^{7,15-17} this study did not find residential status, TB diagnosis characteristics, TB treatment status, lack of TB knowledge, substance use and TB-AIDS stigma associated with “Not tested for HIV”.

As a recommendation, more focus should be placed on offering routine HIV testing to all patients with presumptive and diagnosed TB, especially among older and Thai TB patients in Thailand.

Study limitations

Caution should be taken when interpreting the results of this study because of certain limitations. Generalisability of our findings is limited to TB patients on treatment in public health care centres. As this was a cross-sectional study, causality between the variables cannot be concluded. A further limitation was that variables were assessed by self-report and desirable responses may have been given. Moreover, there were some problems of identifying migrants in this study, which can explain the lower than expected number of migrant participants. Some areas of assessment were not included in the study, which have been related to non-uptake of HIV testing in TB patients, such as HIV knowledge¹⁵, reasons for not testing for HIV⁸, relational factors¹³, and health system factors.^{13,18}

Recommendations

The level of HIV testing among TB public health care patients was by far suboptimal, as per policy all patients should be tested. The Ministry of Public Health should continue to scale-up HIV testing and other collaborative TB-HIV services at health facilities.

Acknowledgements

The study was supported by the Global Fund through the Raks Thai Foundation.

References

1. Aung MN, Moolphate S, Paudel D, Jayathunge Ph M, Duangrithi D, Wangdi K, Aung TN, Lorga T, Higuchi K. Global evidence directing regional preventive strategies in Southeast Asia for fighting TB/HIV. *J Infect Dev Ctries.* 2013;7(3):191-202.
2. World Health Organization (WHO). Global tuberculosis report 2014. Geneva, Switzerland: WHO, 2014.
3. World Health Organization (WHO) Thailand and the Bureau of TB (2013) Forum on international migration and health in Thailand: status and challenges to controlling TB, Bangkok, 4-6 June 2013. Retrieved at http://www.searo.who.int/thailand/news/final_report_tb_review.pdf; accessed 10 December 2014
4. Thai National AIDS Committee. 2014 Thailand AIDS response progress report, 2014. Available at http://www.unaids.org/sites/default/files/en/dataanalysis/knowyourresponse/countryprogressreports/2014countries/THA_narrative_report_2014.pdf Accessed 10 April 2015.
5. World Health Organization (WHO). Improving the diagnosis and treatment of smear-negative pulmonary and extra-pulmonary tuberculosis among adults and adolescents. Recommendations for HIV prevalent and resource-constrained settings. Geneva, Switzerland: WHO, 2006.
6. Nateniyom S, Jittimanee SX, Viriyakitjar D, Jittimanee S, Keophaithool S, Varma JK. Provider-initiated diagnostic HIV counselling and testing in tuberculosis clinics in Thailand. *Int J Tuberc Lung Dis.* 2008;12(8):955-61.
7. Anuwatnonthakate A, Jittimanee SX, Cain J, Nateniyom S, Wattanaamornkiat W, Komsakorn S, Moolphate S, Banyati P, Chiengsorn N, Limsomboon P, Kaewsa-Ard S, Varma JK. Barriers to human immunodeficiency virus testing of tuberculosis patients in Thailand, 2004-2007. *Int J Tuberc Lung Dis.* 2010;14(8):980-5.
8. Peltzer K, Mchunu G, Tutshana B, Naidoo P, Matseke G, Louw J (2012) Predictors of non-uptake of human immunodeficiency virus testing by tuberculosis patients in three districts, South Africa. *Iranian J Pub Health.* 2012;41(11):19-26.
9. World Health Organization (WHO). Advocacy, communication and social mobilization for TB control: a guide to developing knowledge, attitude and practice surveys. WHO/HTM/STB/2008.46, Geneva, Switzerland: WHO, 2008.
10. Van Rie A, Sengupta S, Pungrassami P, Balthip Q, Choonuan S, Kasetjaroen Y, Strauss RP, Chongsuvivatwong V. Measuring stigma associated with tuberculosis and HIV/AIDS in southern Thailand: exploratory and confirmatory factor analyses of two new scales. *Trop Med Int Health.* 2008;13(1):21-30.
11. Babor TF, Higgins-Biddle JC, Saunders JB, Monteiro MG. AUDIT: The Alcohol Use Disorders Identification Test. Guidelines for use in primary care. Geneva: World Health Organization, Department of Mental Health and Substance Dependence. WHO/MSD/MSB/01.6a, 2001.
12. World Health Organization (WHO) Guidelines for controlling and monitoring the tobacco epidemic. WHO, Geneva, 1998.

13. Kigozi NG, Heunis JC, Wouters E, van den Berg HS. Tuberculosis patients' reasons for, and suggestions to address non-uptake of HIV testing: a cross-sectional study in the Free State Province, South Africa. *BMC Health Serv Res.* 2011;11:110. doi: 10.1186/1472-6963-11-110.
14. Nabbuye-Sekandi J, Okot-Chono R, Rusen ID, Dlodlo RA, Katamba A, Tumwesigye NM, Fujiwara PI. Factors associated with human immunodeficiency virus testing among tuberculosis patients receiving treatment at health facilities in Uganda. *Int J Tuberc Lung Dis* 2010;14(7):896-902.
15. Ayenew A, Leykun A, Colebunders R, Deribew A. Predictors of HIV testing among patients with tuberculosis in North West Ethiopia: a case-control study. *PLoS One* 2010;5(3):e9702. doi: 10.1371/journal.pone.0009702.
16. Kigozi NG, Heunis JC, Chikobvu P, van den Berg H, van Rensburg HC, Wouters E. Predictors of uptake of human immunodeficiency virus testing by tuberculosis patients in Free State Province, South Africa. *Int J Tuberc Lung Dis* 2010;14(4):399-405.
17. Mahendradhata Y, Ahmad RA, Kusuma TA, Boelaert M, Van der Werf MJ, Kimerling ME, Van der Stuyft P. Voluntary counselling and testing uptake and HIV prevalence among tuberculosis patients in Jogjakarta, Indonesia. *Trans R Soc Trop Med Hyg.* 2008;102(10):1003-10.
18. Okot-Chono R, Mugisha F, Adatu F, Madraa E, Dlodlo R, Fujiwara P (2009). Health system barriers affecting the implementation of collaborative TB-HIV services in Uganda. *Int J Tuberc Lung Dis*, 13:955-961.