

ORIGINAL ARTICLE

Incidence and risk factors of needle stick and sharp injuries among registered nurses in Thailand

Maiyara Setthamas¹, Krisada Sawaengdee², Tuangtip Theerawit³, Viroj Tangcharoensathien⁴, Somsak Pitaksanurat⁵, Bandit Thinkhamrop⁶, Nathaphop Chaichaya⁷ and Wilaihorn Thinkhamrop⁸

¹ Dr.P.H., Candidate, Faculty of Public Health, Khon Kaen University, Thailand

² Ph.D., Office of Health Technical Ministry of Public Health, Thailand

³ M.P.H., International Health Policy Program, Thailand

⁴ Ph.D., International Health Policy Program, Thailand

⁵ Dr.Tech., Faculty of Public Health, Khon Kaen University, Thailand

⁶ Ph.D., Faculty of Public Health, Khon Kaen University, Thailand

⁷ M.P.H., Faculty of Public Health, Khon Kaen University, Thailand

⁸ Dr.P.H., Faculty of Public Health, Khon Kaen University, Thailand

Corresponding author: Wilaihorn Thinkhamrop *E-mail:* wilathi@kku.ac.th

Received: 11 January 2018 *Revised:* 12 March 2018 *Accepted:* 23 March 2018

Available online: March 2018

Abstract

Setthamas M, Sawaengdee K, Theerawit T, Tangcharoensathien V, Pitaksanurat S, Thinkhamrop B, Chaichaya N and Thinkhamrop W. Incidence and risk factors of needle stick and sharp injuries among registered nurses in Thailand. *J Pub Health Dev.* 2018;16(1):17-28

Needle stick and sharp injuries (NSIs) and persistent needle stick and sharp injuries (PNSIs) are serious occupation hazards among registered nurses (RNs). This study aims to estimate the incidence rate of NSIs and PNSIs and identify risk factors of PNSIs. Data from the first wave of the Thai Nurse Cohort Study, where cohort members were enrolled in 2009 and the second wave, a 3-year follow-up survey in 2012 were analyzed. NSIs were defined as self-reported NSIs during the previous 12 months in either wave, while PNSIs were those who reported NSIs in both waves.

Among 13,754 RNs in wave 1, the incidence rate was 0.27 per person-years (95% CI= 0.26-0.28). Wave 2 included 8,238 RNs who remained in the study, where the incidence rate of NSIs was 0.17 per person-years (95%CI= 0.16-0.18). The NSIs had reduced by 48% after the 3-year follow-up (OR = 0.52; 95%CI= 0.47-0.57). The prevalence of PNSI was 17.4%, based on the total number of 240 RNs who reported persistent NSI. The strongest risk factor of PNSI was working on night shifts for > 16 shifts per month (Adj OR=3.20; 95%CI= 1.70-6.00) compared to not working night shifts.

In the context of blood borne infections, universal precaution and prevention of NSI is critical to safeguard health workforce. Nurses especially those who work in night shifts should be taught preventative strategies against NSIs and PNSIs. PNSI is an indicator reflecting failure of preventive measures.

Keywords: needle stick and sharp injuries, persistent needle stick and sharp injuries, registered nurses, cohort study, Thailand

อุบัติการณ์และปัจจัยเสี่ยงต่อการถูกเข้ามิ่งค่าและ ของมีค่าบ้าดในพยาบาลวิชาชีพประเทศไทย

ไนยรา เศรษฐมานас¹ กฤณาดา แสงวิชี² ดวงพิพิช ชีระวิทย์³ วีโรจน์ ตั้งเจริญเสถียร⁴
สมศักดิ์ พิทักษณ์รัตน์⁵ บัณฑิต ถินคำราพ⁶ ณัฐาภ พชัยชญา⁷ และ วิลัยพร ถินคำราพ⁸

¹ Dr.P.H. นักศึกษาปริญญาเอก คณะสาธารณสุขศาสตร์ มหาวิทยาลัยขอนแก่น ประเทศไทย

² Ph.D. สำนักวิชาการสาธารณสุข กระทรวงสาธารณสุข ประเทศไทย

³ M.P.H. สำนักงานพัฒนานโยบายสุขภาพระหว่างประเทศ ประเทศไทย

⁴ Ph.D. สำนักงานพัฒนานโยบายสุขภาพระหว่างประเทศ ประเทศไทย

⁵ Dr.Tech. คณะสาธารณสุขศาสตร์ มหาวิทยาลัยขอนแก่น ประเทศไทย

⁶ Ph.D. คณะสาธารณสุขศาสตร์ มหาวิทยาลัยขอนแก่น ประเทศไทย

⁷ M.P.H. คณะสาธารณสุขศาสตร์ มหาวิทยาลัยขอนแก่น ประเทศไทย

⁸ Dr.P.H. คณะสาธารณสุขศาสตร์ มหาวิทยาลัยขอนแก่น ประเทศไทย

บทคัดย่อ

ไนยรา เศรษฐมานас กฤณาดา แสงวิชี ดวงพิพิช ชีระวิทย์ วีโรจน์ ตั้งเจริญเสถียร สมศักดิ์ พิทักษณ์รัตน์ บัณฑิต ถินคำราพ ณัฐาภ พชัยชญา และวิลัยพร ถินคำราพ อุบัติการณ์และปัจจัยเสี่ยงต่อการถูกเข้ามิ่งค่าและของมีค่าบ้าดในพยาบาลวิชาชีพประเทศไทย ว. สาธารณสุขและการพัฒนา 2561;16(1):17-28

การได้รับบาดเจ็บจากการถูกเข้ามิ่งค่าและของมีค่าบ้าด และการยังคงได้รับบาดเจ็บจากการถูกเข้ามิ่งค่าและของมีค่าบ้าด เป็นสิ่งคุกคามในพยาบาลวิชาชีพ การศึกษาในครั้งนี้เพื่อประเมินค่าอุบัติการณ์การได้รับบาดเจ็บจากการถูกเข้ามิ่งค่าและของมีค่าบ้าด และการยังคงได้รับบาดเจ็บจากการถูกเข้ามิ่งค่าและของมีค่าบ้าด และหาปัจจัยเสี่ยงต่อการยังคงได้รับบาดเจ็บจากการถูกเข้ามิ่งค่าและของมีค่าบ้าด ใช้ข้อมูลระยะที่ 1 จากโครงการศึกษาพยาบาลไทยในระยะยาว ป.ค. 2009 ติดตามข้อมูลลังจากนั้น 3 ปี ใช้ข้อมูลระยะที่ 2 ปี ค.ศ 2012 การได้รับบาดเจ็บจากการถูกเข้ามิ่งค่าและของมีค่าบ้าด เป็นการรายงานด้วยตนเองว่าใน 12 เดือนที่ผ่านมาได้รับบาดเจ็บจากการถูกเข้ามิ่งค่าและของมีค่าบ้าดหรือไม่ ในแต่ละระยะ ต่อการยังคงได้รับบาดเจ็บจากการถูกเข้ามิ่งค่าและของมีค่าบ้าด คือพยาบาลที่ได้รับบาดเจ็บจากการถูกเข้ามิ่งค่าและของมีค่าบ้าดทั้ง 2 ระยะ

พยาบาลวิชาชีพจำนวน 13,754 คน ในระยะที่ 1 พบ อุบัติการณ์การได้รับบาดเจ็บจากการถูกเข้ามิ่งค่าและของมีค่าบ้าด 0.27 ต่อ คน-ปี (95% CI= 0.26-0.28). ระยะที่ 2 พยาบาลวิชาชีพจำนวน 8,238 พบ อุบัติการณ์ 0.17 ต่อ คน-ปี (95%CI= 0.16-0.18). การได้รับบาดเจ็บจากการถูกเข้ามิ่งค่าและของมีค่าบ้าดลดลง 48% หลังจากติดตาม 3 ปี (OR = 0.52; 95%CI= 0.47-0.57). มีความชุกของคนที่ยังคงได้รับบาดเจ็บจากการถูกเข้ามิ่งค่าและของมีค่าบ้าด 17.4% คิดเป็นจำนวนทั้งหมด 240 คน ปัจจัยเสี่ยงต่อการยังคงได้รับบาดเจ็บจากการถูกเข้ามิ่งค่าและของมีค่าบ้าด คือการทำงานกะกลางคืนมากกว่า 16 ครั้งต่อเดือน (Adj OR=3.20; 95%CI= 1.70-6.00) เมื่อเทียบกับพยาบาลที่ไม่ได้ทำงานกะกลางคืน

การป้องกันการติดเชื้อแบบครอบจักรวาลเป็นสิ่งสำคัญต่อการป้องกันการติดเชื้อที่ป่นเปื้อนกับเลือด พยาบาลที่ทำงานกะกลางคืนนั้นควรได้รับการอบรมการป้องกันตนเองจากการได้รับบาดเจ็บจากการถูกเข้ามิ่งค่าและของมีค่าบ้าด การยังคงได้รับบาดเจ็บจากการถูกเข้ามิ่งค่าและของมีค่าบ้าดถือเป็นตัวสะท้อนถึงความล้มเหลวของมาตรการการป้องกัน

คำสำคัญ: การได้รับบาดเจ็บจากการถูกเข้ามิ่งค่าและของมีค่าบ้าด การยังคงได้รับบาดเจ็บจากการถูกเข้ามิ่งค่าและของมีค่าบ้าด พยาบาลวิชาชีพ การศึกษาระยะยาว ประเทศไทย

Introduction

Approximately 35 million health care workers (HCWs) worldwide are subject to percutaneous injuries by contaminated sharp objects from the clinical settings¹. In particular, needle stick and sharp injuries (NSIs) are occupational hazards specifically related to blood-borne pathogen infections such as: hepatitis B virus, hepatitis C virus, and human immunodeficiency virus, which result in high morbidity, mortality and economic loss worldwide¹⁻³. The HCW incidence report notes a high occurrence of NSIs of greater than 50% of total incidences⁴. Registered nurses (RNs) are the largest population among HCWs who work directly with patient care⁴. Their clinical and nursing service activities expose to greater risk of NSIs⁵⁻⁸. A study conducted in the United States of America reported that the rates of occupational exposure to patient's blood were the highest among nurses and midwives; nurses have 4.27 times more exposed than physicians⁹.

A number of studies looking at the NSIs incidence have been reported elsewhere for example: Australia (0.2 events per nurse-year)¹⁰; the USA (0.8 events per nurse-year)¹¹; Japan (0.75 events per nurse-year)¹²; Iran (1.2 events per nurse-year)¹³; Taiwan (1.6 per HCW-year)¹⁴, and quite high among countries in Sub-Saharan Africa (4.18 events per nurse-year)¹⁵.

Several factors associated with NSIs are reported such as: years of service; place of work; age; emotional exhaustion; work environment; fatigue; shift work; and hours worked per week^{11-12, 16-22}. Health care workers who attended educational programs on injury prevention were not related to needle stick injuries. Following universal precautions were protective factor (OR= 0.34; 95%CI= 0.17-0.68)¹⁷. Although the Centers for Disease Control (CDC) developed

specific guidelines to prevent NSIs²³, they still occur in many countries²⁴. In Nepal, 44.7% of nursing students experienced more than one NSI during their study²⁵. In Iran, 75.6% of nurses had one to four NSIs in the past year²⁶; and in Japan, 42.6% of the nurses at a teaching hospital had experienced multiple needle stick related injuries in one year¹². Non-studies investigated the magnitude of persistent needle stick and sharp injuries (PNSIs).

In Thailand, the studies evaluating the magnitude of NSIs and PNSIs among RNs are limited. Additionally, change of NSIs incidence over time reflects the success or failure of preventive interventions. This study is the first step toward developing a guideline based on the real country context and evidence, for effective NSI prevention in Thailand.

This study aims to determine the incidence rate of NSIs among registered nurses in Thailand using the Thai Nurse Cohort Study (TNCS) and a three-year follow-up which contribute to the incidence of PNSI. Consequently, identifying the key risk factors of PNSI contributes to effective preventative measures.

Methods

Study design

This study utilized data from the TNCS database. TNCS is a 20-year longitudinal cohort study. In 2009 and 2012, TNCS conducted a baseline survey. A random sample of RNs who held nursing licenses granted by the Thailand Nursing and Midwifery Council (TNC) in 2008 were surveyed via mailed-questionnaires. Those who responded were enrolled into the study. TNCS aims to investigate the workforce dynamics and health conditions of Thai RNs.

Sampling method

A total of 142,699 RNs who held nursing licenses and whose names were listed in the TNC database in 2009 formed the base population of the study. Sample size was planned by TNCS project based on the aim of detecting events with a proportion of as low as 1% with a precision of $+-0.1\%$. i.e., a relative precision of $+-10\%$, for two-sided 95% confidence level. A sample of 50,200 RNs were randomly selected based on a stratified random sampling with probability proportional to the population of nurses of each 10-year age stratum. The questionnaires were sent via post following the random sampling technique. Of these, 18,198 posts could not be delivered due to incorrect address. Those who received questionnaires were 32,002.

Wave 1 occurred in 2009 and included a total of 18,756 respondents (58.6%). RNs whose job types were nursing in academia, nursing administration, unemployed, and/or student were excluded from this study. Thai RNs (n=13,754) who worked in the nursing service during the previous 12 months from the date of data collection were included in the analysis.

Wave 2 was the follow-up after 3 years (2012) and included 11,282 respondents (60.2%) from wave 1. For the analysis of wave 2, subjects who were formally working in the nursing services during the previous 12 months of wave 2 data collection and who responded to the wave 2 questionnaire included a total of 8,238 subjects. The final criteria of determining wave 2 included RNs who were formally considered RNs during both wave 1 and 2 (n=5,920).

This method was utilized in order to investigate the reduction of NSIs from wave 1 in 2009 and wave 2 in 2012. Lastly, our study included nurses from

wave 1 who had been injured by a needle stick or sharp object (n=1,576) to determine the risk factors potentially associated with PNSIs

Study variables

The primary outcome of this study was experiencing NSIs or sharp objects caused by a primary duty during the prior 12 months of RNs. Those who were injured by a needle stick or sharp object in wave 1 and 2 were referred to having PNSIs. In this study, the independent variables were sex, age, technical training >4 months, marital status, types of workplace, part-time job, work shift, and the number of shifts worked during the 9:00 p.m. - 7:00 a.m. night shift per month.

Statistical analysis

STATA version 13 (Stata Corp, College Station, TX) was used for data analysis. Descriptive analysis was presented through percentage, mean (standard deviation), and median. The incidence of NSIs per person-years was calculated by summing the total number of NSIs during the previous 12 months of data collection during both wave 1 and 2. McNemar's test was used to investigate the NSIs that were associated between wave 1 and 2. Logistic regression analysis was used to examine the risk factors for PNSIs by adjusted OR with 95% confidence interval (95% CI). The significance level was set at 0.05.

Ethics Approval

This study was approved by the KhonKaen University Ethics Committee in human research (Reference No. HE582085). TNCS project was approved by the Human Research and Ethics Committee of

the Ministry of Public Health, Thailand (Reference No. 51/2552).

Results

Incidence of needle stick and sharp injuries

Baseline characteristics of the sample in wave 1 (n=13,754) are presented in Table 1. Almost all were

female (96.4%) with a mean age of 41.6 years (SD = 9.4). The majority of nurses worked in a hospital (83.4%) and day shift hours (48.2%).

The incidence of NSIs during the 12 months before data collection was 0.27 per person-years (95% CI= 0.26-0.28) (Table 2). The majority of NSI

Table 1 Percentage of registered nurses by baseline characteristics in Thailand, 2009

Factors	Number	Percent
Sex		
Female	13,192	96.4
Male	488	3.6
Age (years)		
20-29	1,563	12.4
30-39	3,465	27.6
40-49	4,629	36.9
50+	2,904	23.1
Mean (SD); 41.6(9.4)		
(Min : Max); (20.5 : 65.4)		
Technical training > 4 months		
No	9,183	67.4
Yes	4,444	32.6
Marital status		
Married	8,230	60.1
Single/ widowed/ divorced/ separated	5,473	39.9
Types of workplace		
Hospital	10,969	83.4
District health promoting hospital	1,366	10.4
Other	821	6.2
Others work (part time)		
No	9,955	77.6
Yes	2,865	22.4
Work shift		
Day shift	6,428	48.2
Both day shift and night shift rotation	3,534	26.5
No shift work	1,977	14.9
Night shift	1,389	10.4

การสารสนเทศสุขและการพัฒนา
ปีที่ 16 ฉบับที่ 1 มกราคม-เมษายน 2561

Table 2 The incidence of needle stick and sharp injuries per nurse years for wave 1 and wave 2

Factors	Wave 1 (2009)					Wave 2 (2012)				
	n	Person-years	n	Incidence Per person-year	95%CI	n	Person-years	n	Incidence Per person-year	95%CI
Overall	13,754	12,733.4	3,565	0.27	0.26-0.28	8,238	6,936.7	1,208	0.17	0.16-0.18
Sex										
Female	13,192	12,231	3,427	0.27	0.26-0.28	7,899	6,656.8	1,152	0.17	0.16-0.18
Male	488	441.4	118	0.26	0.22-0.32	237	199.9	41	0.21	0.15-0.28
Technical training > 4 months										
No	9,183	8,524.1	2,538	0.29	0.28-0.30	7,018	5,921.9	1,047	0.18	0.17-0.19
Yes	4,444	4,103.7	1,002	0.24	0.22-0.25	1,159	976.4	154	0.16	0.13-0.18
Marital status										
Single/ widowed/ divorced/ separated	5,473	4,966.8	1,775	0.35	0.33-0.37	3,115	2,602.0	553	0.21	0.20-0.23
Married	8,230	7,719.5	1,777	0.23	0.22-0.24	5,079	4,309.4	648	0.15	0.14-0.16
Types of workplace										
District health promoting hospital	1,366	1,303.4	388	0.30	0.27-0.33	562	504.8	109	0.22	0.18-0.26
Hospital	10,969	10,332	2,896	0.28	0.27-0.29	7,029	5,997.9	1,034	0.17	0.16-0.18
Other	821	557.4	140	0.20	0.17-0.25	453	333.9	46	0.14	0.10-0.18
Others work (part time)										
No	9,955	9,179.7	2,450	0.26	0.25-0.27	5,534	4,714.2	754	0.16	0.15-0.17
Yes	2,865	2,692.3	897	0.33	0.31-0.35	2,427	2,061.5	423	0.21	0.19-0.23
Shift work										
Night shift	1,389	1,327.9	553	0.41	0.38-0.45	-	-	-	-	-
Both day shift and night shift rotation	3,534	3,343.4	1,309	0.39	0.37-0.41	2,777	2,417.5	632	0.26	0.24-0.28
Day shift / no shift work	8,405	7,724.3	1,608	0.20	0.19-0.21	5,272	4,408.5	559	0.13	0.12-0.14
Number of shifts worked 9.00 pm-7.00 am per month										
> 16 shifts per month	-	-	-	-	-	238	204.8	66	0.32	0.25-0.41
13-16 shifts per month	-	-	-	-	-	496	439.1	122	0.28	0.23-0.33
9-12 shifts per month	-	-	-	-	-	694	610.9	165	0.27	0.23-0.31
5-8 shifts per month	-	-	-	-	-	715	630.5	152	0.24	0.20-0.28
1-4 shifts per month	-	-	-	-	-	713	617.3	113	0.18	0.15-0.22
0 shifts per month	-	-	-	-	-	5,134	4,318.6	568	0.13	0.12-0.14

incidence (per person-years) included: women (0.27, 95%CI= 0.26-0.28); those who did not receive any technical training for more than 4 months (0.29, 95%CI= 0.28-0.30); those who were single, widowed, divorced, or separated (0.35, 95%CI= 0.33-0.37); those who worked in a district health promoting hospital (0.30, 95%CI= 0.27-0.33); had part-time jobs (0.33, 95%CI= 0.31-0.35); and worked the night shift (0.41, 95%CI= 0.38-0.45).

In wave 2 only a sample of 8,238 was obtained and NSI rates were 0.17 per person-years (95% CI= 0.16-0.18). The incidence rate for NSIs stratified by group demonstrated that the majority of the NSI incidence at follow-up (per person-years) included: men (0.21, 95%CI= 0.15-0.28); those with no any technical training more than 4 months (0.18, 95%CI= 0.17-0.19); those who reported being single, widowed, divorced, or separated (0.21, 95% CI= 0.20-0.23); worked in a district health promoting hospital (0.22, 95%CI= 0.18-0.26); had a part-time job (0.21, 95%CI= 0.19-0.23); both day shift and night shift rotation (0.26, 95%CI= 0.24-0.28); and worked the night shift (9:00 p.m. – 7:00 a.m.) more than 16 session per month(0.32, 95%CI= 0.25-0.41) as shown in Table 2.

Factors associated with persistent NSIs.

There was a 48% reduction in the number of NSIs from wave 1 to wave 2 (Table 3).The odds of this reduction from wave 1 and 2 was statistically significant (OR = 0.52; 95%CI= 0.47-0.57).

The results from the logistic regression regarding the risk factors associated to PNSIs are presented in Table 4. In the crude analysis, five variables were found to be statistically significant risk factors of PNSIs: age; marital status; having a part-time job;

shift work; and the frequency of taking night shifts (between 9:00 p.m. and 7:00 a.m. per month). The results from the multiple logistic regression reported three variables as statistically significant risk factors for PNSIs: marital status; having a part-time job; and the number of night shifts worked between 9:00 p.m. and 7:00 a.m. in a month. There is the gradient effects of the intensity of taking nightshift and the incidence of PNSI; where the strongest risk factor associated to PNSIs was working night shift for more than 16 sessions in a month (Adj OR = 3.20; 95%CI= 1.70-6.00).

Discussion

Key findings

This is the first study to present the incidence of NSIs over time, 0.27 per person-years (95%CI= 0.26-0.28), and examined an association between NSIs in RNs from a cohort study with wave 1 to wave 2. The incidence rate of NSIs during wave 1 related to the odds of the incidence rate in NSIs during wave 2. Nearly half of the RNs in this study could prevent NSIs. A principal finding from our study was that Thai RNs are at substantial risk for NSIs when working night shift hours between 9:00 pm to 7:00 am, more than 16 times per month.

The incidence rates of NSIs in developing countries and regions, such as: Iran¹³ and Sub-Saharan Africa¹⁵, were higher than developed countries, such as: Japan¹², France²⁷, the United States¹¹, and Australia¹⁰. The incidence rate of NSIs in our study was 0.27 per person-years (95% CI= 0.26-0.28), higher than similar studies conducted in the United States that reported 0.11 per HCWs and in Saudi Arabia with 0.038 per HCWs per year^{5,28}. The study

Table 3 Odds ratio of the NSIs that were associated between wave 1 and 2

Events	Number	Number	Changes between waves	95%CI	P-value
	(Wave 1)	(Wave 2)	(Wave 2-Wave 1)		
Number of NSIs	1,377	827			
Total number of nurses	5,072	5,072			
Percent of NSIs	27.1	16.3			
Odds ratio			0.52	0.47 to 0.57	<0.001

Table 4 Multiple logistic regression for risk factors of persistent needle stick and sharp injuries (PNSIs)

Factors	n	% PNSIs	Crude OR	Adjusted OR	95%CI	P-value
Overall	1,576	17.4				
Marital status	1,498					0.004
Others	589	21.1	1.60	1.50	1.10-1.90	0.003
Married	909	14.5	1	1		
Part-time job	1,467					0.004
No	1,005	15.1	0.60	0.60	0.40-0.80	0.001
Yes	462	21.9	1	1		
Number of shifts worked 9.00 pm-7.00 am per month	1,472					<0.001
> 16 shifts per month	52	34.6	3.60	3.20	1.70-6.00	<0.001
13-16 shifts per month	89	29.2	2.80	2.50	1.50-4.10	0.001
9-12 shifts per month	123	25.2	2.30	2.10	1.30-3.30	<0.001
5-8 shifts per month	143	20.9	1.80	1.70	1.10-2.60	0.034
1-4 shifts per month	155	18.1	1.50	1.40	0.90-2.20	0.066
0 shifts per month	910	12.9	1	1		
Age (years)	1,457				-	
20-29	259	19.1	1.2			
30-39	476	17.9	1.1			
40-49	436	16.8	1.0			
50+	286	16.5	1			
Shift work	1,523				-	
Both day shift and night shift	516	25.3	2.2			
rotation						
Day shift / no shift work	1007	13.3	1			

conducted in the United States reports an incidence rate of 43%, an underestimate possibly due to their self-administered questionnaires that included questions such as, "Have you ever been injured by a needle stick or sharp object in the past 12 months?". Responses may have resulted in under-reporting since one person may have experienced more than one NSI, creating a knowledge gap regarding NSI frequency and persistent NSIs.

Our findings were consistent with a the United States study in that working the night shift was associated with an increased risk of NSI by 1.59 (95%CI= 1.20-2.11)²². A typical RN hospital position provides three different eight-hour shifts that covers a full day (24-hour) and this has been found to cause an intense feeling of fatigue²⁹.

Smith et al. (2006) reported that nurses who experienced significant fatigue after work were 1.87 times more likely to sustain multiple NSIs¹². Additionally a Turkish hospital showed that the factors significant increasing the rate of NSIs were working for more than 8 hours/day³⁰. A Korean study showed that working a mixed shift (day shifts followed by night shifts, or vice versa) was associated with a 4 times increased risk (compared with day-only) and 4.4 times (compared with night-only)²¹.

Performing shift work has been identified as the main cause of error from service nurses. Marias DJ et al. (1996) found that NSIs increased during specific shift times, particularly the first and last 2 hours of a shift³¹. The emergency room and In-Patient Department report the most NSIs in hospital RNs³², likely due to tense emergency environments and situations. Short staffing at shift level results in a disparity in patient-to-nurse ratio, which is also associated with

the risk of NSIs²⁰. The World Bank reported that in 2010, Thailand had 2.1 RNs for every 1,000 people, which is fewer than the United States (9.8); Australia (9.6); Singapore (6.4); and Japan (10.9)³³. The shortage of registered nurses is an issue worldwide that can exacerbate this issue of increasing number of day and night shift hours worked³⁴.

Strengths and Weaknesses

This study was part of the TNCS project by using the most sample groups that ever been studied in developing countries. The tools used for this study were created for several research purposes, which were not specific to the investigation in this particular study alone. Although the dependent variable questioned "Have you ever been injured by a needle stick or sharp object in the past 12 months?" it was found that a quarter of nurses in Thailand had ever been injured by a needle stick or sharp object in the past 12 months. Comparing with the other researches using number of episode, the lower number in this research than the actual one could be a weak point. There were also other related factors such as the practice of universal precaution, emotional exhaustion, work environment, fatigue excluded in this study because this research was conducted and analyzed data obtained from TNCS project database. The area of NSIs will be attentively observed and analyzed in the further research.

Recommendations

Avoiding shift work is impracticable in the nursing career, therefore we suggest that the number of night shifts worked per RN be reduced in order to decrease fatigue. We also suggest a monitoring

system over RN health and well-being; and a better support system aimed at promoting healthy work environments. RNs in Thailand should take precautions in accident prevention by being aware of established work shift guidelines³².

Future surveys included in TNCS may include questions in regards to persistent NSIs specifying RN safety training; modifiable risk factors; use of safety equipment; and factors related to fatigue such as sleep quality and quantity.

In conclusion, our study revealed issues behind NSIs among RNs in Thailand. One-fourth of the RNs in Thailand experienced NSIs in the past 12-months and after a 3-year follow up, approximately half of them prevented future NSIs through improved awareness about the issue. The incidence of PNSIs was associated with marital status, having apart-time job, and the number of night shifts (9:00 p.m. - 7:00 a.m.) worked per month. Therefore, in order to decrease the number of PNSIs, hospitals should implement strategies to prevent injuries, such as monitoring and reporting systems at the national level. Future studies must identify and establish the factors associated with persistent NSIs in the hospital setting to strengthen guidelines and prevent NSIs altogether.

Acknowledgements

The authors would like to acknowledge and thank the TNCS data manager for her assistance as well as all the cohort members included in this analysis for their valuable participation.

References

1. Prüss-Üstün A, Rapiti E, Hutin Y. Estimation of the global burden of disease attributable to contaminated sharps injuries among health-care workers. *American Journal of Industrial Medicine*. 2005;48(6):482-90.
2. Doig C. Education of medical students and house staff to prevent hazardous occupational exposure. *Canadian Medical Association Journal*. 2000;162(3):344-5.
3. NIOSH. Preventing needle stick injuries in health care setting. Cincinnati: NIOSH; 1999.
4. Ball J, Pike G. *Needlestick injury* 2008. London: Royal College of Nursing; 2008.
5. Memish ZA, Almuneef M, Dillon J. Epidemiology of needlestick and sharps injuries in a tertiary care center in Saudi Arabia. *American Journal of Infection Control*. 2002;30(4):234-41.
6. Puro VMD, Carli GDMD, Petrosillo NMD, Giuseppe Ippolito MD, the, Group SIROdHIV. Risk of Exposure to Bloodborne Infection for Italian Healthcare Workers, by Job Category and Work Area • Infection Control and Hospital Epidemiology. 2001;22(4):206-10.
7. Tan L, Hawk IJ, Sterling ML. Report of the council on scientific affairs: Preventing needlestick injuries in health care settings. *Archives of Internal Medicine*. [doi: 10.1001/archinte.161.7.929]. 2001;161(7):929-36.
8. Wang FDMD, Chen YYRN, Liu CYMD. Analysis of Sharp-Edged Medical-Object Injuries at a Medical Center in Taiwan • Infection Control and Hospital Epidemiology. 2000;21(10):656-8.
9. Denis M-A, Ecochard R, Bernadet A, Forissier M-F, Porst J-M, Robert O, et al. Risk of Occupational Blood Exposure in a Cohort of 24,000 Hospital Healthcare Workers: Position and Environment Analysis Over Three Years. *Journal*

of Occupational and Environmental Medicine. 2003;45(3):283-8.

10. Smith DR, Smyth W, Leggat PA, Wang R-S. Needlestick and sharps injuries among nurses in a tropical Australian hospital. *International Journal of Nursing Practice*. 2006;12(2):71-7.

11. Aiken LH, Sloane DM, Klocinski JL. Hospital nurses' occupational exposure to blood: prospective, retrospective, and institutional reports. *American Journal of Public Health*. 1997;87(1):103-7.

12. Smith DR, Mihashi M, Adachi Y, Nakashima Y, Ishitake T. Epidemiology of needlestick and sharps injuries among nurses in a Japanese teaching hospital. *Journal of Hospital Infection*. 2006;64(1):44-9.

13. Ebrahimi H, Khosravi A. Needlestick Injuries among Nurses. *Journal of Research in Health Sciences*. 2007;7(2):56-62.

14. Shiao J, Guo L, McLaws ML. Estimation of the risk of bloodborne pathogens to health care workers after a needlestick injury in Taiwan. *American Journal of Infection Control*. 2002;30(1):15-20.

15. Nsubuga FM, Jaakkola MS. Needle stick injuries among nurses in sub-Saharan Africa. *Tropical Medicine & International Health*. 2005;10(8):773-81.

16. Cho E, Lee H, Choi M, Park SH, Yoo IY, Aiken LH. Factors associated with needlestick and sharp injuries among hospital nurses: A cross-sectional questionnaire survey. *International Journal of Nursing Studies*. 2013;50(8):1025-32.

17. Kakizaki M, Ikeda N, Ali M, Enkhtuya B, Tsolmon M, Shibuya K, et al. Needlestick and sharps injuries among health care workers at public tertiary hospitals in an urban community in Mongolia. *BMC Research Notes*. 2011;4(1):1-6.

18. Manzoor I, Daud S, Hashmi NR, Sardar H, Babar MS, Rahman A, et al. Needle Stick Injuries in Nurses at a Tertiary Health Care Facility. *Journal of Ayub Medical College, Abbottabad*. 2010;22(3):174-8.

19. Martins A, Coelho AC, Vieira M, Matos M, Pinto ML. Age and years in practice as factors associated with needlestick and sharps injuries among health care workers in a Portuguese hospital. *Accident Analysis & Prevention*. 2012;47:11-5.

20. Patrician PA, Pryor E, Fridman M, Loan L. Needlestick injuries among nursing staff: Association with shift-level staffing. *American Journal of Infection Control*. 2011;39(6):477-82.

21. Smith DR, Choe M-A, Jeong JS, Jeon M-Y, Chae YR, An GJ. Epidemiology of Needlestick and Sharps Injuries Among Professional Korean Nurses. *Journal of Professional Nursing*. 2006;22(6):359-66.

22. Trinkoff AM, Le R, Geiger-Brown J, Lipscomb J. Work Schedule, Needle Use, and Needlestick Injuries Among Registered Nurses. *Infection Control & Hospital Epidemiology*. 2007;28(02):156-64.

23. CDC. Workbook for Designing, Implementing and Evaluating a Sharps Injury Prevention Program: CDC; 2008. [Cited 2015 October 13]. Available from: http://www.cdc.gov/sharpssafety/pdf/sharpsworkbook_2008.pdf.

24. Saia M, Hofmann F, Sharman J, Abiteboul D, Campins M, Burkowitz J, et al. Needlestick Injuries: Incidence and Cost in the United States, United Kingdom, Germany, France, Italy, and Spain. *Biomedicine International*. 2010;1:41-9.

25. Paudel BK, Karki K, Dangol L, Guragain AM. Incidence Of Needle Stick Injury Among Proficiency Certificate Level Nursing Students In Kathmandu, Nepal. *International Journal Of Scientific & Technology Resseach* 2013;2(9):277-81.
26. Askarian M, Shaghaghian S, McLaws M-L. Needlestic Injuries Among Nurses of Fars Province, Iran. *Annals of Epidemiology*. 2007;17(12):988-92.
27. Lamontagne F, Abiteboul D, Lolom I, Pellissier G, Tarantola A, Descamps JM, et al. Role of Safety-Engineered Devices in Preventing Needlestic Injuries in 32 French Hospitals. *Infection Control & Hospital Epidemiology*. 2007;28(01):18-23.
28. Panlilio AL, Orelion JG, Srivastava PU, Jagger J, Cohn RD, Cardo DM. Estimate of the Annual Number of Percutaneous Injuries Among Hospital-Based Healthcare Workers in the United States, 1997–1998. *Infection Control & Hospital Epidemiology*. 2004;25(07):556-62.
29. Department of Labour. Managing shift work to minimize workplace fatigue. Wellington: Department of Labour; 2007. [Cited 2015 October 13]. Available from: <http://www.business.govt.nz/worksafe/information-guidance/all-guidance-items/managing-shift-work-to-minimise-workplace-fatigue-a-guide-for-small-businesses/managing-shiftwork-fatigue-smallbusiness-07.pdf>.
30. İlhan MN, Durukan E, Aras En, Türkçüoğlu S, Aygün R. Long working hours increase the risk of sharp and needlestic injury in nurses: the need for new policy implication. *Journal of Advanced Nursing*. 2006;56(5):563-8.
31. Marias DJ, Li JH, Brillman JC, Tandberg D. Effect of Time of Day and Duration into Shift on Hazardous Exposures to Biological Fluids. *Academic Emergency Medicine*. 1996;3(6):605-10.
32. Unahalekhaka A, Lueang-a-papong S. Prevention of Needlestic and Sharp Injuries among Hospitals in Thailand. *American Journal of Infection Control*. 2015;43(6):S44-S45.
33. Nurses and midwives(per 1,000 people) [database on the Internet]2010 [Cited 2015 October 13]. Available from: <http://data.worldbank.org/indicator/SH.MED.NUMW.P3>.
34. World Health Organization. Wanted:2.4 million nurses and that's just in India. *Bulletin of the World Health Organization*. 2010;88(5):321-400.